

CANopen-Handbuch

item Servo Positioning Controller C Serie

item Industrietechnik GmbH Friedenstraße 107-109 42699 Solingen Germany Telefon: +49-(0)212-6580-0
Telefax: +49-(0)212-6580-310
E-mail: info@item24.com
http://www.item24.com

Urheberrechte

© 2016 item Industrietechnik GmbH. Alle Rechte vorbehalten.

Die Informationen und Angaben in diesem Dokument sind nach bestem Wissen zusammengestellt worden. Trotzdem können abweichende Angaben zwischen dem Dokument und dem Produkt nicht mit letzter Sicherheit ausgeschlossen werden. Für die Geräte und zugehörige Programme in der dem Kunden überlassenen Fassung gewährleistet item den vertragsgemäßen Gebrauch in Übereinstimmung mit der Nutzerdokumentation. Im Falle erheblicher Abweichungen von der Nutzerdokumentation ist item zur Nachbesserung berechtigt und, soweit diese nicht mit unangemessen Aufwand verbunden ist, auch verpflichtet. Eine eventuelle Gewährleistung erstreckt sich nicht auf Mängel, die durch Abweichen von den für das Gerät vorgesehenen und in der Nutzerdokumentation angegebenen Einsatzbedingungen verursacht werden.

item übernimmt keine Gewähr dafür, dass die Produkte den Anforderungen und Zwecken des Erwerbers genügen oder mit anderen von ihm ausgewählten Produkten zusammenarbeiten. item übernimmt keine Haftung für Folgeschäden, die im Zusammenwirken der Produkte mit anderen Produkten oder aufgrund unsachgemäßer Handhabung an Maschinen oder Anlagen entstehen.

item Industrietechnik GmbH behält sich das Recht vor, das Dokument oder das Produkt ohne vorherige Ankündigung zu ändern, zu ergänzen oder zu verbessern.

Dieses Dokument darf weder ganz noch teilweise ohne ausdrückliche Genehmigung des Urhebers in irgendeiner Form reproduziert oder in eine andere natürliche oder maschinenlesbare Sprache oder auf Datenträger übertragen werden, sei es elektronisch, mechanisch, optisch oder auf andere Weise.

Warenzeichen

Alle Produktnamen in diesem Dokument können eingetragene Warenzeichen sein. Alle Warenzeichen in diesem Dokument werden nur zur Identifikation des jeweiligen Produkts verwendet.

item Motion Soft™ ist ein eingetragenes Warenzeichen der item Industrietechnik GmbH.

Inhaltsverzeichnis

1	Alla	jemeines	12
	1.1		
	1.2	CANopen	13
2	Sich	herheitshinweise für elektrische Antriebe und Steuerungen	14
	2.1	Verwendete Symbole	
	2.2	Allgemeine Hinweise	
	2.3	Gefahren durch falschen Gebrauch	16
	2.4	Sicherheitshinweise	17
		2.4.1 Allgemeine Sicherheitshinweise	17
		2.4.2 Sicherheitshinweise bei Montage und Wartung	18
		2.4.3 Schutz gegen Berühren elektrischer Teile	
		2.4.4 Schutz durch Schutzkleinspannung (PELV) gegen elektrischen Schlag	20
		2.4.5 Schutz vor gefährlichen Bewegungen	
		2.4.6 Schutz gegen Berühren heißer Teile	
		2.4.7 Schutz bei Handhabung und Montage	22
3	Verl	kabelung und Steckerbelegung	24
0	3.1	Anschlussbelegungen	
		Verkabelungs-Hinweise	
4		· ·	
4		ivierung von CANopen	
	4.1		
5	Zugriffsverfahren		
	5.1	Einleitung	
	5.2	SDO-Zugriff	
		5.2.1 SDO-Sequenzen zum Lesen und Schreiben	
		5.2.2 SDO-Fehlermeldungen	
		5.2.3 Simulation von SDO-Zugriffen über RS232	
	5.3	PDO-Message	
		5.3.1 Beschreibung der Objekte	
		5.3.2 Objekte zur PDO-Parametrierung	
		5.3.3 Aktivierung der PDOs	
	5.4	SYNC-Message	
	5.5	EMERGENCY-Message	
		5.5.1 Übersicht	
		5.5.2 Aufbau der EMERGENCY-Message	
		5.5.3 Beschreibung der Objekte	
	F 0	5.5.3.1 Objekt 1003h: pre_defined_error_field	
	5.6	Netzwerkmanagement (NMT-Service)	
	5.7	Bootup	
		5.7.1 Übersicht	
	F 0	5.7.2 Aufbau der Bootup- Nachricht	
	5.8	Heartbeat (Error Control Protocol)	
		5.8.1 Übersicht	
		5.8.2 Aufbau der Heartbeat- Nachricht	61

		5.8.3 Beschrei	ibung der Objekte	61
		5.8.3.1	Objekt 1017h: producer_heartbeat_time	61
	5.9	Nodeguarding	(Error Control Protocol)	63
		5.9.1 Übersich	nt	63
		5.9.2 Aufbau d	der Nodeguarding-Nachrichten	63
		5.9.3 Beschrei	ibung der Objekte	64
		5.9.3.1	Objekt 100Ch: guard_time	64
		5.9.3.2	Objekt 100Dh: life_time_factor	64
	Tabe	elle der Identifier	ſ	65
6	Para	ameter einste	llen	66
	6.1	6.1 Parametersätze laden und speichern		66
		6.1.1 Übersicht		66
		6.1.2 Beschrei	ibung der Objekte	70
		6.1.2.1	Objekt 1011 _h : restore_default_parameters	70
		6.1.2.2	Objekt 1010 _h : store_parameters	
	6.2	Kompatibilitäts	s- Einstellungen	72
		6.2.1 Übersich	ıt	72
		6.2.2 Beschrei	ibung der Objekte	
		6.2.2.1	In diesem Kapitel behandelte Objekte	
		6.2.2.2	Objekt 6510 _h _F0 _h : compatibility_control	
	6.3	_	faktoren (Factor Group)	
			ıt	
			ibung der Objekte	
		6.3.2.1	In diesem Kapitel behandelte Objekte	
		6.3.2.2	Objekt 6093 _h : position_factor	
		6.3.2.3	Objekt 6094h: velocity_encoder_factor	
		6.3.2.4	Objekt 6097 _h : acceleration_factor	
	C 4	6.3.2.5	Objekt 607Eh: polarity	
	6.4	•	ımetert	
			ibung der Objekte	
		6.4.2.1	Objekt 6510 _h _10 _h : enable_logic	
		6.4.2.2	Objekt 6510 _h _30 _h : pwm_frequency	
		6.4.2.3	Objekt 6510 _h _3A _h : enable_enhanced_modulation	
		6.4.2.4	Objekt 6510 _h _31 _h : power_stage_temperature	
		6.4.2.5	Objekt 6510 _h _32 _h : max_power_stage_temperature	
		6.4.2.6	Objekt 6510 _h _33 _h : nominal_dc_link_circuit_voltage	
		6.4.2.7	Objekt 6510h_34h: actual_dc_link_circuit_voltage	
		6.4.2.8	Objekt 6510 _h _35 _h : max_dc_link_circuit_voltage	
		6.4.2.9	Objekt 6510 _h _36 _h : min_dc_link_circuit_voltage	
		6.4.2.10	Objekt 6510 _h _37 _h : enable_dc_link_undervoltage_error	
		6.4.2.11		
		6.4.2.12	Objekt 6510 _h _41 _h : peak_current	
	6.5		nd Motoranpassung	
		_	ıt	
		6.5.2 Beschrei	ibung der Objekte	99
		6.5.2.1	Objekt 6075h: motor_rated_current	99
		6.5.2.2	Objekt 6073h: max_current	100
		6.5.2.3	Objekt 604Dh: pole_number	100
		6.5.2.4	Objekt 6410 _h _03 _h : iit_time_motor	101
		6.5.2.5	Objekt 6410h_04h: iit_ratio_motor	102
		6.5.2.6	Objekt 6510 _h _38 _h : iit_error_enable	103

	6.5.2.7	Objekt 6410 _h _10 _h : phase_order	103
	6.5.2.8	Objekt 6410 _h _11 _h : encoder_offset_angle	104
	6.5.2.9	Objekt 6410 _h _14 _h : motor_temperature_sensor_polarity	106
	6.5.2.10	Objekt 6510 _{h_2} E _h : motor_temperature	106
	6.5.2.11	Objekt 6510 _{h_2} F _h : max_motor_temperature	107
	6.5.2.12	Objekt 60F6h: torque_control_parameters	108
6.6	Drehzahlregle	r	109
	6.6.1 Übersich	nt	109
	6.6.2 Beschre	ibung der Objekte	109
	6.6.2.1	Objekt 60F9h: velocity_control_parameters	109
	6.6.2.2	Objekt 2073h: velocity_display_filter_time	111
6.7	Lageregler (Po	osition Control Function)	112
	6.7.1 Übersich	nt	112
	6.7.2 Beschre	ibung der Objekte	114
	6.7.2.1	In diesem Kapitel behandelte Objekte	114
	6.7.2.2	Betroffene Objekte aus anderen Kapiteln	115
	6.7.2.3	Objekt 60FBh: position_control_parameter_set	115
	6.7.2.4	Objekt 6062h: position_demand_value	118
	6.7.2.5	Objekt 202D _h : position_demand_sync_value	118
	6.7.2.6	Objekt 6064h: position_actual_value	120
	6.7.2.7	Objekt 6065h: following_error_window	120
	6.7.2.8	Objekt 6066h: following_error_time_out	122
	6.7.2.9	Objekt 60FAh: control_effort	122
	6.7.2.10	Objekt 6067h: position_window	123
	6.7.2.11	Objekt 6068h: position_window_time	123
	6.7.2.12	Objekt 6510 _h _22 _h : position_error_switch_off_limit	124
	6.7.2.13	Objekt 607B _h : position_range_limit	125
	6.7.2.14	Objekt 6510 _h _20 _h : position_range_limit_enable	126
	6.7.2.15	Objekt 2030 _h : set_position_absolute	127
6.8	•	enzung	
	6.8.1 Beschre	ibung der Objekte	128
	6.8.1.1	In diesem Kapitel behandelte Objekte	128
	6.8.1.2	Objekt 2415h: current_limitation	128
	6.8.1.3	Objekt 2416h: speed_limitation	130
6.9		ıngen	
		nt	
	6.9.2 Beschre	ibung der Objekte	
	6.9.2.1	In diesem Kapitel behandelte Objekte	132
	6.9.2.2	Objekt 2024 _h : encoder_x2a_data_field	133
	6.9.2.3	Objekt 2026 _h : encoder_x2b_data_field	
	6.9.2.4	Objekt 2025 _h : encoder_x10_data_field	
6.10	•	eberemulation	
	6.10.1	Übersicht	
	6.10.2	Beschreibung der Objekte	140
	6.10.2.1	In diesem Kapitel behandelte Objekte	140
		Objekt 201A _h : encoder_emulation_data	
		Objekt 2028 _h : encoder_emulation_resolution	
6.11	Soll- / Istwerta	aufschaltung	
	6.11.1	Übersicht	
	6.11.2	Beschreibung der Objekte	143
		In diesem Kapitel behandelte Objekte	
	6.11.2.2	Objekt 201F _h : commutation_encoder_select	143

61123	Objekt 2021 _h : position_encoder_selection	145
	Objekt 2022 _h : synchronisation_encoder_selection	
	Objekt 202F _h : synchronisation_selector_data	
	Objekt 2023 _h : synchronisation_filter_time	
	inge	
6.12.1	Übersicht	
6.12.2	Beschreibung der Objekte	
	2400 _n : analog_input_voltage (Eingangsspannung)	
	Objekt 2401 _h : analog_input_offset (Offset Analogeingänge)	
	nd Ausgänge	
6.13.1	Übersicht	
6.13.2	Beschreibung der Objekte	152
6.13.2.1	In diesem Kapitel behandelte Objekte	152
6.13.2.2	Objekt 60FDh: digital_inputs	153
6.13.2.3	Objekt 60FE _h : digital_outputs	153
6.13.2.4	Objekt 2420 _n : digital_output_state_mapping	155
6.14 Endschalter /	Referenzschalter	158
6.14.1	Übersicht	158
6.14.2	Beschreibung der Objekte	158
6.14.2.1	Objekt 6510 _h _11 _h : limit_switch_polarity	158
6.14.2.2	Objekt 6510 _h _12 _h : limit_switch_selector	159
6.14.2.3	Objekt 6510 _h _14 _h : homing_switch_polarity	159
	Objekt 6510 _h _13 _h : homing_switch_selector	
	Objekt 6510 _h _15 _h : limit_switch_deceleration	
6.15 Sampling von	Positionen	
6.15.1	Übersicht	
6.15.2	Beschreibung der Objekte	
	In diesem Kapitel behandelte Objekte	
	Objekt 204A _h : sample_data	
	euerung	
6.16.1	Ubersicht	
6.16.2	Beschreibung der Objekte	
	Objekt 6510 _h _18 _h : brake_delay_time	
	tionen	
6.17.1	Beschreibung der Objekte	
	Objekt 1018 _h : identity_object	
	Objekt 6510 _h _A0 _h : drive_serial_number	
	Objekt 6510 _h _A1 _h : drive_type	
	Objekt 6510 _h _A9 _h : firmware_main_version	
	Objekt 6510 _h _AA _h : firmware_custom_version	
	Objekt 6510 _h _AD _h : km_release Objekt 6510 _h _AC _h : firmware_type	
	Objekt 6510 _{h_} Ac _h . Ill*Ill*ware_type	
	Objekt 6510 _h _B0 _h : cycletime_current_controller	
	O Objekt 6510 _h _81 _h . cycletime_velocity_controller 0 Objekt 6510 _h _82 _h : cycletime_position_controller	
	1 Objekt 6510 _{h_} B2 _h : cycletime_position_controller	
	2 Objekt 6510 _h _CO _h : commissioning_state	
	ement	
6.18.1	Übersicht	
6.18.2	Beschreibung der Objekte	
	In diesem Kapitel behandelte Objekte	
	Objekt 2100 _h : error_management	
	, – 5	

		6.18.2.3	Objekt 200F _h : last_warning_code	180
7	Ger	ätesteuerung	(Device Control)	181
	7.1	•	amm (State Machine)	
		•	nt	
			tandsdiagramm des Reglers (State Machine)	
		7.1.2.1	Zustandsdiagramm: Zustände	
		7.1.2.2	Zustandsdiagramm: Zustandsübergänge	
		7.1.3 controlw	vord (Steuerwort)	
		7.1.3.1	Objekt 6040h: controlword	
		7.1.4 Ausleser	n des Reglerzustands	
			ords (Statusworte)	
		7.1.5.1	Objekt 6041 _h : statusword	
		7.1.5.2	Objekt 2000h: manufacturer_statuswords	
		7.1.5.3	Objekt 2005h: manufacturer_status_masks	
		7.1.5.4	Objekt 200A _h : manufacturer_status_invert	
			ibung der weiteren Objekte	
		7.1.6.1	In diesem Kapitel behandelte Objekte	
		7.1.6.2	Objekt 605Bh: shutdown_option_code	
		7.1.6.3	Objekt 605Ch: disable_operation_option_code	
		7.1.6.4	Objekt 605Ah: quick_stop_option_code	
		7.1.6.5	Objekt 605E _h : fault_reaction_option_code	
^	ъ.			
8				
	8.1		Betriebsart	
			nt	
			ibung der Objekte	
		8.1.2.1	In diesem Kapitel behandelte Objekte	
		8.1.2.2	Objekt 6060h: modes_of_operation	
		8.1.2.3	Objekt 6061 _{h:} modes_of_operation_display	
	8.2		ferenzfahrt (Homing Mode)	
			nt	
			ibung der Objekte	
		8.2.2.1	In diesem Kapitel behandelte Objekte	
		8.2.2.2	Betroffene Objekte aus anderen Kapiteln	211
		8.2.2.3	Objekt 607Ch: home_offset	
		8.2.2.4	Objekt 6098h: homing_method	
		8.2.2.5	Objekt 6099 _h : homing_speeds	
		8.2.2.6	Objekt 609A _h : homing_acceleration	
		8.2.2.7	Objekt 2045 _h : homing_timeout	
			zfahrt-Abläufe	
		8.2.3.1	Methode 1: Negativer Endschalter mit Nullimpulsauswertung	
		8.2.3.2	Methode 2: Positiver Endschalter mit Nullimpulsauswertung	
		8.2.3.3	Methoden 7 u. 11: Referenzschalter und Nullimpulsauswertung	217
		Methode	17: Referenzfahrt auf den negativen Endschalter	
		8.2.3.4	Methode 18: Referenzfahrt auf den positiven Endschalter	218
		8.2.3.5	Methoden 23 und 27: Referenzfahrt auf den Referenzschalter	219
		8.2.3.6	Methode -1: negativer Anschlag mit Nullimpulsauswertung	220
		8.2.3.7	Methode -2: positiver Anschlag mit Nullimpulsauswertung	220
		8.2.3.8	Methode -17: Referenzfahrt auf den negativen Anschlag	
		8.2.3.9	Methode -18: Referenzfahrt auf den positiven Anschlag	
		8.2.3.10	Methoden 32 und 33: Referenzfahrt auf den Nullimpuls	
		8.2.3.11	Methode 34: Referenzfahrt auf die aktuelle Position	222

	8.2.4 Steuerur	ng der Referenzfanrt	222
8.3	Betriebsart Po	sitionieren (Profile Position Mode)	223
	8.3.1 Übersich	nt	223
	8.3.2 Beschre	ibung der Objekte	224
	8.3.2.1	In diesem Kapitel behandelte Objekte	224
	8.3.2.2	Betroffene Objekte aus anderen Kapiteln	224
	8.3.2.3	Objekt 607A _h : target_position	
	8.3.2.4	Objekt 6081h: profile_velocity	
	8.3.2.5	Objekt 6082 _h : end_velocity	
	8.3.2.6	Objekt 6083 _h : profile_acceleration	
	8.3.2.7	Objekt 6084h: profile_deceleration	
· · · · · · · · · · · · · · · · · · ·		Objekt 6085h: quick_stop_deceleration	
	8.3.2.9	Objekt 6086h: motion_profile_type	
0.4		nsbeschreibung	
8.4		osition Mode	
		nt	
		ibung der Objekte	
	8.4.2.1	In diesem Kapitel behandelte Objekte	
	8.4.2.2	Betroffene Objekte aus anderen Kapiteln	
	8.4.2.3	Objekt 60CO _n : interpolation_submode_select	
	8.4.2.4	Objekt 60C1 _h : interpolation_data_record	
	8.4.2.5	Objekt 60C2 _h : interpolation_time_period	
	8.4.2.6	Objekt 60C3 _h : interpolation_sync_definition	
	8.4.2.7	Objekt 60C4 _h : interpolation_data_configuration	
		nsbeschreibung	
	8.4.3.1 8.4.3.2	Vorbereitende Parametrierung	
	8.4.3.2	Aktivierung des Interpolated Position Mode und Aufsynchronisation	
8.5		Unterbrechung der Interpolation im Fehlerfallehzahlregelung (Profile Velocity Mode)	
0.5		nt	
		ibung der Objekte	
	8.5.2.1	In diesem Kapitel behandelte Objekte	
	8.5.2.2	Betroffene Objekte aus anderen Kapiteln	
	8.5.2.3	Objekt 6069 _h : velocity_sensor_actual_value	
	8.5.2.4	Objekt 606Ah: sensor_selection_code	
	8.5.2.5	Objekt 606B _h : velocity_demand_value	
	8.5.2.6	Objekt 202E _h : velocity_demand_sync_value	
	8.5.2.7	Objekt 606Ch: velocity_actual_value	
	8.5.2.8	Objekt 2074h: velocity_actual_value_filtered	
	8.5.2.9	Objekt 606D _h : velocity_window	
	8.5.2.10		
		Objekt 606F _h : velocity_threshold	
		Objekt 6070 _h : velocity_threshold_time	
		Objekt 6080h: max_motor_speed	
		Objekt 60FFh: target_velocity	
8.6		ipen	
8.7		omentenregelung (Profile Torque Mode)	
0.7		nt	
		ibung der Objekte	
	8.7.2.1	In diesem Kapitel behandelte Objekte	
	8.7.2.2	Betroffene Objekte aus anderen Kapiteln	
	8.7.2.3	Objekt 6071 _h : target_torque	
		, 11 5 - 1	

	8.7.2.4	Objekt 6072h: max_torque	260
	8.7.2.5	Objekt 6074h: torque_demand_value	261
	8.7.2.6	Objekt 6076h: motor_rated_torque	
	8.7.2.7	Objekt 6077h: torque_actual_value	
	8.7.2.8	Objekt 6078h: current_actual_value	
	8.7.2.9	Objekt 6079h: dc_link_circuit_voltage	
	8.7.2.10	Objekt 6087h: torque_slope	
		Objekt 6088h: torque_profile_type	
9	Anhang		265
•		s CAN-Interface	
		i	
10	Stichwortverzeich	nnis	275
10		II II U	······ <i>L I</i> C

Abbildungsverzeichnis

Abbildung 3.1:	CAN-Steckverbinder für item C Serie	24
Abbildung 3.2:	Verkabelungsbeispiel	25
Abbildung 5.3:	Zugriffsverfahren	29
Abbildung 5.4:	NMT-State machine	58
Abbildung 6.5:	Übersicht: Factor Group	77
Abbildung 6.6:	Schleppfehler – Funktionsübersicht	112
Abbildung 6.7:	Schleppfehler	113
Abbildung 6.8:	Position erreicht – Funktionsübersicht	113
Abbildung 6.9:	Position erreicht	114
Abbildung 6.10:	Funktion der Bremsverzögerung (bei Drehzahlregelung / Positionieren)	167
Abbildung 7.11:	Zustandsdiagramm des Reglers	182
Abbildung 7.12: V	Vichtigste Zustandsübergänge des Reglers	183
Abbildung 8.1:	Die Referenzfahrt	210
Abbildung 8.2:	Home Offset	211
Abbildung 8.3:	Referenzfahrt auf den negativen Endschalter mit Auswertung des Nullimpulses	216
Abbildung 8.4:	Referenzfahrt auf den positiven Endschalter mit Auswertung des Nullimpulses	217
Abbildung 8.5:	Referenzfahrt auf den Referenzschalter mit Auswertung des Nullimpulses bei positiver An	fangsbewegung217
Abbildung 8.6:	Referenzfahrt auf den Referenzschalter mit Auswertung des Nullimpulses bei negativer Ar	nfangsbewegung21
Abbildung 8.7:	Referenzfahrt auf den negativen Endschalter	218
Abbildung 8.8:	Referenzfahrt auf den positiven Endschalter	218
Abbildung 8.9:	Referenzfahrt auf den Referenzschalter bei positiver Anfangsbewegung	219
Abbildung 8.10:	Referenzfahrt auf den Referenzschalter bei negativer Anfangsbewegung	219
Abbildung 8.11:	Referenzfahrt auf den negativen Anschlag mit Auswertung des Nullimpulses	220
Abbildung 8.12:	Referenzfahrt auf den positiven Anschlag mit Auswertung des Nullimpulses	220
Abbildung 8.13:	Referenzfahrt auf den negativen Anschlag	221
Abbildung 8.14:	Referenzfahrt auf den positiven Anschlag	221
Abbildung 8.15:	Referenzfahrt nur auf den Nullimpuls bezogen	222
Abbildung 8.16:	Fahrkurven-Generator und Lageregler	223
Abbildung 8.17:	Fahrauftrag-Übertragung von einem Host	229
Abbildung 8.18:	Einfacher Fahrauftrag	230
Abbildung 8.19:	Lückenlose Folge von Fahraufträgen	230
Abbildung 8.20:	Fahrauftrag Lineare Interpolation zwischen zwei Datenwerten	232
Abbildung 8.21:	Aufsynchronisation und Datenfreigabe	242
Abbildung 8.22:	Struktur des drehzahlgeregelten Betriebs (Profile Velocity Mode)	245
Abbildung 8.23	Ermittlung von velocity, actual, value und velocity, actual, value, filtered	250

Allgemeines

Abbildung 8.24:	Drehzahlrampen	254
Abbildung 8.25:	Struktur des drehmomentengeregelten Betriebs	257

1 Allgemeines

1.1 Dokumentation

Das vorliegende Handbuch beschreibt, wie die item Servo Positioning Controller C Serie in eine CANopen-Netzwerkumgebung einbezogen werden kann. Es wird die Einstellung der physikalischen Parameter, die Aktivierung des CANopen-Protokolls, die Einbindung in das CAN-Netzwerk und die Kommunikation mit dem Servopositionierregler beschrieben. Es richtet sich an Personen, die bereits mit dieser Servopositionierregler-Reihe vertraut sind.

Es enthält Sicherheitshinweise, die beachtet werden müssen.

Weitergehende Informationen finden sich in folgenden Handbüchern zur item C Serie:

- Softwarehandbuch "item Servo Positioning Controller C Serie": Beschreibung der Gerätefunktionalität und der Softwarefunktionen der Firmware einschließlich der RS232 Kommunikation. Beschreibung des Parametrierprogramms item Motion Soft™ mit einer Anleitung bei der Erstinbetriebnahme der item Servo Positioning Controller C Serie.
- Produkthandbuch "item Servo Positioning Controller C 1-Serie": Beschreibung der technischen Daten und der Gerätefunktionalität sowie Hinweise zur Installation und Betrieb der item Servo Positioning Controller C 1-Serie.
- Produkthandbuch "item Servo Positioning Controller C 3-Serie": Beschreibung der technischen Daten und der Gerätefunktionalität sowie Hinweise zur Installation und Betrieb der item Servo Positioning Controller C 3-Serie.
- CANopen-Handbuch "item Servo Positioning Controller C Serie": Beschreibung des implementierten CANopen Protokolls gemäß DSP402
- PROFIBUS-Handbuch "item Servo Positioning Controller C Serie": Beschreibung des implementierten PROFIBUS-DP Protokolls.
- SERCOS-Handbuch "item Servo Positioning Controller C Serie": Beschreibung der implementierten SERCOS-Funktionalität.

1.2 CANopen

CANopen ist ein von der Vereinigung "CAN in Automation" erarbeiteter Standard. In diesem Verbund sind eine Vielzahl von Geräteherstellern organisiert. Dieser Standard hat die bisherigen herstellerspezifischen CAN-Protokolle weitgehend ersetzt. Somit steht dem Endanwender ein herstellerunabhängiges Kommunikations-Interface zur Verfügung.

Von diesem Verbund sind unter anderem folgende Handbücher beziehbar:

CiA Draft Standard 201-207: In diesen Werken werden die allgemeinen Grundlagen und die Einbettung von CANopen in das OSI-Schichtenmodell behandelt. Die relevanten Punkte dieses Buches werden im vorliegenden CANopen-Handbuch vorgestellt, so dass der Erwerb der DS201..207 im allgemeinen nicht notwendig ist.

CiA Draft Standard 301: In diesem Werk wird der grundsätzliche Aufbau des Objektverzeichnisses eines CANopen-Gerätes und der Zugriff auf dieses beschrieben. Außerdem werden die Aussagen der DS201..207 konkretisiert. Die für die item Servo Positioning Controller C Serie benötigten Elemente des Objektverzeichnisses und die zugehörigen Zugriffsmethoden sind im vorliegendem Handbuch beschrieben. Der Erwerb der DS301 ist ratsam aber nicht unbedingt notwendig.

CiA Draft Standard 402: Dieses Buch befasst sich mit der konkreten Implementation von CANopen in Antriebsregler. Obwohl alle implementierten Objekte auch im vorliegenden CANopen-Handbuch in kurzer Form dokumentiert und beschrieben sind, sollte der Anwender über dieses Werk verfügen.

Bezugsadresse:

CAN in Automation (CiA) International Headquarter Am Weichselgarten 26 D-91058 Erlangen

Tel.: 09131-601091 Fax: 09131-601092

www.can-cia.de

Der CANopen- Implementierung des Reglers liegen folgende Normen zugrunde:

[1] CiA Draft Standard 301, Version 4.02, 13. Februar 2002 [2] CiA Draft Standard Proposal 402, Version 2.0, 26. Juli 2002

2 Sicherheitshinweise für elektrische Antriebe und Steuerungen

2.1 Verwendete Symbole

Information

Wichtige Informationen und Hinweise.

Vorsicht

Die Nichtbeachtung kann hohe Sachschäden zur Folge haben.

GEFAHR!

Die Nichtbeachtung kann Sachschäden und Personenschäden zur Folge haben.

Vorsicht! Lebensgefährliche Spannung.

Der Sicherheitshinweis enthält einen Hinweis auf eine eventuell auftretende lebensgefährliche Spannung.

Die mit diesem Symbol gekennzeichneten Abschnitte stellen Beispiele dar, die das Verständnis und die Anwendung einzelner Objekte und Parameter erleichtern.

2.2 Allgemeine Hinweise

Bei Schäden infolge von Nichtbeachtung der Warnhinweise in dieser Betriebsanleitung übernimmt die item Industrietechnik GmbH keine Haftung.

Vor der Inbetriebnahme sind die *Sicherheitshinweise für elektrische Antriebe und Steuerungen ab Seite 14* durchzulesen.

Wenn die Dokumentation in der vorliegenden Sprache nicht einwandfrei verstanden wird, bitte beim Lieferant anfragen und diesen informieren.

Der einwandfreie und sichere Betrieb des Servoantriebsreglers setzt den sachgemäßen und fachgerechten Transport, die Lagerung, die Montage und die Installation sowie die sorgfältige Bedienung und die Instandhaltung voraus. Für den Umgang mit elektrischen Anlagen ist ausschließlich ausgebildetes und qualifiziertes Personal einsetzen:

AUSGEBILDETES UND QUALIFIZIERTES PERSONAL

im Sinne dieses Produkthandbuches bzw. der Warnhinweise auf dem Produkt selbst sind Personen, die mit der Aufstellung, der Montage, der Inbetriebsetzung und dem Betrieb des Produktes sowie mit allen Warnungen und Vorsichtsmaßnahmen gemäß dieser Betriebsanleitung in diesem Produkthandbuch ausreichend vertraut sind und über die ihrer Tätigkeit entsprechenden Qualifikationen verfügen:

- Ausbildung und Unterweisung bzw. Berechtigung, Geräte/Systeme gemäß den Standards der Sicherheitstechnik ein- und auszuschalten, zu erden und gemäß den Arbeitsanforderungen zweckmäßig zu kennzeichnen.
- Ausbildung oder Unterweisung gemäß den Standards der Sicherheitstechnik in Pflege und Gebrauch angemessener Sicherheitsausrüstung.
- Schulung in Erster Hilfe.

Die nachfolgenden Hinweise sind vor der ersten Inbetriebnahme der Anlage zur Vermeidung von Körperverletzungen und/oder Sachschäden zu lesen:

Diese Sicherheitshinweise sind jederzeit einzuhalten.

Versuchen Sie nicht, den Servoantriebsregler zu installieren oder in Betrieb zu nehmen, bevor Sie nicht alle Sicherheitshinweise für elektrische Antriebe und Steuerungen in diesem Dokument sorgfältig durchgelesen haben. Diese Sicherheitsinstruktionen und alle anderen Benutzerhinweise sind vor jeder Arbeit mit dem Servoantriebsregler durchzulesen.

Sollten Ihnen keine Benutzerhinweise für den Servoantriebsregler zur Verfügung stehen, wenden Sie sich an Ihren zuständigen Vertriebsrepräsentanten. Verlangen Sie die unverzügliche Übersendung dieser Unterlagen an den oder die Verantwortlichen für den sicheren Betrieb des Servoantriebsreglers.

Bei Verkauf, Verleih und/oder anderweitiger Weitergabe des Servoantriebsreglers sind diese Sicherheitshinweise ebenfalls mitzugeben.

Ein Öffnen des Servoantriebsreglers durch den Betreiber ist aus Sicherheits- und Gewährleistungsgründen nicht zulässig.

Die Voraussetzung für eine einwandfreie Funktion des Servoantriebsreglers ist eine fachgerechte Projektierung!

GEFAHR!

Unsachgemäßer Umgang mit dem Servoantriebsregler und Nichtbeachten der hier angegebenen Warnhinweise sowie unsachgemäße Eingriffe in die Sicherheitseinrichtung können zu Sachschaden, Körperverletzung, elektrischem Schlag oder im Extremfall zum Tod führen.

2.3 Gefahren durch falschen Gebrauch

GEFAHR!

Hohe elektrische Spannung und hoher Arbeitsstrom!

Lebensgefahr oder schwere Körperverletzung durch elektrischen Schlag!

GEFAHR!

Hohe elektrische Spannung durch falschen Anschluss!

Lebensgefahr oder Körperverletzung durch elektrischen Schlag!

GEFAHR!

Heiße Oberflächen auf Gerätegehäuse möglich!

Verletzungsgefahr! Verbrennungsgefahr!

GEFAHR!

Gefahrbringende Bewegungen!

Lebensgefahr, schwere Körperverletzung oder Sachschaden durch unbeabsichtigte Bewegungen der Motoren!

2.4 Sicherheitshinweise

2.4.1 Allgemeine Sicherheitshinweise

Der Servoantriebsregler entspricht der Schutzklasse IP20, sowie der Verschmutzungsklasse 1. Es ist darauf zu achten, dass die Umgebung dieser Schutz- bzw. Verschmutzungsklasse entspricht.

Nur vom Hersteller zugelassene Zubehör- und Ersatzteile verwenden.

Die Servoantriebsregler müssen entsprechend den EN-Normen und VDE-Vorschriften so an das Netz angeschlossen werden, dass sie mit geeigneten Freischaltmitteln (z.B. Hauptschalter, Schütz, Leistungsschalter) vom Netz getrennt werden können.

Der Servoantriebsregler kann mit einem allstromsensitiven Fl-Schutzschalter (RCD = Residual Current protective Device) 300mA abgesichert werden.

Zum Schalten der Steuerkontakte sollten vergoldete Kontakte oder Kontakte mit hohem Kontaktdruck verwendet werden.

Vorsorglich müssen Entstörungsmaßnahmen für Schaltanlagen getroffen werden, wie z.B. Schütze und Relais mit RC-Gliedern bzw. Dioden beschalten.

Es sind die Sicherheitsvorschriften und -bestimmungen des Landes, in dem das Gerät zur Anwendung kommt, zu beachten.

Die in der Produktdokumentation angegebenen Umgebungsbedingungen müssen eingehalten werden. Sicherheitskritische Anwendungen sind nicht zugelassen, sofern sie nicht ausdrücklich vom Hersteller freigegeben werden.

Die Hinweise für eine EMV-gerechte Installation sind aus dem Produkthandbuch item Servo Positioning Controller C 1-Serie zu entnehmen. Die Einhaltung der durch die nationalen Vorschriften geforderten Grenzwerte liegt in der Verantwortung der Hersteller der Anlage oder Maschine.

Die technischen Daten, die Anschluss- und Installationsbedingungen für den Servoantriebsregler sind aus diesem Produkthandbuch zu entnehmen und unbedingt einzuhalten.

GEFAHR!

Es sind die Allgemeinen Errichtungs- und Sicherheitsvorschriften für das Arbeiten an Starkstromanlagen (z.B. DIN, VDE, EN, IEC oder andere nationale und internationale Vorschriften) zu beachten.

Nichtbeachtung können Tod, Körperverletzung oder erheblichen Sachschaden zur Folge haben.

Ohne Anspruch auf Vollständigkeit gelten unter anderem folgende Vorschriften:

VDE 0100 Bestimmung für das Errichten von Starkstromanlagen bis 1000 Volt

EN 60204 Elektrische Ausrüstung von Maschinen

EN 50178 Ausrüstung von Starkstromanlagen mit elektronischen Betriebsmitteln

2.4.2 Sicherheitshinweise bei Montage und Wartung

Für die Montage und Wartung der Anlage gelten in jedem Fall die einschlägigen DIN, VDE, EN und IEC - Vorschriften, sowie alle staatlichen und örtlichen Sicherheits- und Unfallverhütungsvorschriften. Der Anlagenbauer bzw. der Betreiber hat für die Einhaltung dieser Vorschriften zu sorgen:

Die Bedienung, Wartung und/oder Instandsetzung des Servoantriebsreglers darf nur durch für die Arbeit an oder mit elektrischen Geräten ausgebildetes und qualifiziertes Personal erfolgen.

Vermeidung von Unfällen, Körperverletzung und/oder Sachschaden:

Vertikale Achsen gegen Herabfallen oder Absinken nach Abschalten des Motors zusätzlich sichern, wie durch:

- mechanische Verriegelung der vertikalen Achse,
- externe Brems-/ Fang-/ Klemmeinrichtung oder
- ausreichenden Gewichtsausgleich der Achse.

Die serienmäßig gelieferte Motor-Haltebremse oder eine externe, vom Antriebsregelgerät angesteuerte Motor-Haltebremse alleine ist nicht für den Personenschutz geeignet!

Die elektrische Ausrüstung über den Hauptschalter spannungsfrei schalten und gegen Wiedereinschalten sichern, warten bis der Zwischenkreis entladen ist bei:

- Wartungsarbeiten und Instandsetzung
- Reinigungsarbeiten
- langen Betriebsunterbrechungen

Vor der Durchführung von Wartungsarbeiten ist sicherzustellen, dass die Stromversorgung abgeschaltet, verriegelt und der Zwischenkreis entladen ist.

Der externe oder interne Bremswiderstand führt im Betrieb und kann bis ca. 5 Minuten nach dem Abschalten des Servoantriebsreglers gefährliche Zwischenkreisspannung führen, diese kann bei Berührung den Tod oder schwere Körperverletzungen hervorrufen.

Bei der Montage ist sorgfältig vorzugehen. Es ist sicherzustellen, dass sowohl bei Montage als auch während des späteren Betriebes des Antriebs keine Bohrspäne, Metallstaub oder Montageteile (Schrauben, Muttern, Leitungsabschnitte) in den Servoantriebsregler fallen.

Ebenfalls ist sicherzustellen, dass die externe Spannungsversorgung des Reglers (24V) abgeschaltet ist.

Ein Abschalten des Zwischenkreises oder der Netzspannung muss immer vor dem Abschalten der 24V Reglerversorgung erfolgen.

Die Arbeiten im Maschinenbereich sind nur bei abgeschalteter und verriegelter Wechselstrom- bzw. Gleichstromversorgung durchzuführen. Abgeschaltete Endstufen oder abgeschaltete Reglerfreigabe sind keine geeigneten Verriegelungen. Hier kann es im Störungsfall zum unbeabsichtigten Verfahren des Antriebes kommen.

Die Inbetriebnahme mit leerlaufenden Motoren durchführen, um mechanische Beschädigungen, z.B. durch falsche Drehrichtung zu vermeiden.

Elektronische Geräte sind grundsätzlich nicht ausfallsicher. Der Anwender ist dafür verantwortlich, dass bei Ausfall des elektrischen Geräts seine Anlage in einen sicheren Zustand geführt wird.

Der Servoantriebsregler und insbesondere der Bremswiderstand, extern oder intern, können hohe Temperaturen annehmen, die bei Berührung schwere körperliche Verbrennungen verursachen können.

2.4.3 Schutz gegen Berühren elektrischer Teile

Dieser Abschnitt betrifft nur Geräte und Antriebskomponenten mit Spannungen über 50 Volt. Werden Teile mit Spannungen größer 50 Volt berührt, können diese für Personen gefährlich werden und zu elektrischem Schlag führen. Beim Betrieb elektrischer Geräte stehen zwangsläufig bestimmte Teile dieser Geräte unter gefährlicher Spannung.

GEFAHR!

Hohe elektrische Spannung!

Lebensgefahr, Verletzungsgefahr durch elektrischen Schlag oder schwere Körperverletzung!

Für den Betrieb gelten in jedem Fall die einschlägigen DIN, VDE, EN und IEC - Vorschriften, sowie alle staatlichen und örtlichen Sicherheits- und Unfallverhütungsvorschriften. Der Anlagenbauer bzw. der Betreiber hat für die Einhaltung dieser Vorschriften zu sorgen:

Vor dem Einschalten die dafür vorgesehenen Abdeckungen und Schutzvorrichtungen für den Berührschutz an den Geräten anbringen. Für Einbaugeräte ist der Schutz gegen direktes Berühren elektrischer Teile durch ein äußeres Gehäuse, wie beispielsweise einen Schaltschrank, sicherzustellen. Die Vorschriften VBG 4 sind zu beachten!

Den Schutzleiter der elektrischen Ausrüstung und der Geräte stets fest an das Versorgungsnetz anschließen. Der Ableitstrom ist aufgrund der intregrierten Netzfilter größer als 3,5 mA!

Nach der Norm EN60617 den vorgeschriebenen Mindest-Kupfer-Querschnitt für die Schutzleiterverbindung in seinem ganzen Verlauf beachten!

Vor Inbetriebnahme, auch für kurzzeitige Mess- und Prüfzwecke, stets den Schutzleiter an allen elektrischen Geräten entsprechend dem Anschlussplan anschließen oder mit Erdleiter verbinden. Auf dem Gehäuse können sonst hohe Spannungen auftreten, die elektrischen Schlag verursachen.

Elektrische Anschlussstellen der Komponenten im eingeschalteten Zustand nicht berühren.

Vor dem Zugriff zu elektrischen Teilen mit Spannungen größer 50 Volt das Gerät vom Netz oder von der Spannungsquelle trennen. Gegen Wiedereinschalten sichern.

Bei der Installation ist besonders in Bezug auf Isolation und Schutzmaßnahmen die Höhe der Zwischenkreisspannung zu berücksichtigen. Es muss für ordnungsgemäße Erdung, Leiterdimensionierung und entsprechenden Kurzschlussschutz gesorgt werden.

Das Gerät verfügt über eine Zwischenkreisschnellentladeschaltung gemäß EN60204 Abschnitt 6.2.4. In bestimmten Gerätekonstellationen, vor allem bei der Parallelschaltung mehrerer Servoantriebsregler im Zwischenkreis oder bei einem nicht angeschlossenen Bremswiderstand, kann die Schnellentladung allerdings unwirksam sein. Die Servoantriebsregler können dann nach dem Abschalten bis zu 5 Minuten unter gefährlicher Spannung stehen (Kondensatorrestladung).

2.4.4 Schutz durch Schutzkleinspannung (PELV) gegen elektrischen Schlag

Alle Anschlüsse und Klemmen mit Spannungen von 5 bis 50 Volt an dem Servoantriebsregler sind Schutzkleinspannungen, die entsprechend folgender Normen berührungssicher ausgeführt sind:

international: IEC 60364-4-41

Europäische Länder in der EU: EN 50178/1998, Abschnitt 5.2.8.1.

GEFAHR!

Hohe elektrische Spannung durch falschen Anschluss! Lebensgefahr, Verletzungsgefahr durch elektrischen Schlag!

An alle Anschlüsse und Klemmen mit Spannungen von 0 bis 50 Volt dürfen nur Geräte, elektrische Komponenten und Leitungen angeschlossen werden, die eine Schutzkleinspannung (PELV = Protective Extra Low Voltage) aufweisen.

Nur Spannungen und Stromkreise, die sichere Trennung zu gefährlichen Spannungen haben, anschließen. Sichere Trennung wird beispielsweise durch Trenntransformatoren, sichere Optokoppler oder netzfreien Batteriebetrieb erreicht.

2.4.5 Schutz vor gefährlichen Bewegungen

Gefährliche Bewegungen können durch fehlerhafte Ansteuerung von angeschlossenen Motoren verursacht werden. Die Ursachen können verschiedenster Art sein:

- unsaubere oder fehlerhafte Verdrahtung oder Verkabelung
- Fehler bei der Bedienung der Komponenten
- Fehler in den Messwert- und Signalgebern
- defekte oder nicht EMV-gerechte Komponenten
- Fehler in der Software im übergeordneten Steuerungssystem

Diese Fehler können unmittelbar nach dem Einschalten oder nach einer unbestimmten Zeitdauer im Betrieb auftreten.

Die Überwachungen in den Antriebskomponenten schließen eine Fehlfunktion in den angeschlossenen Antrieben weitestgehend aus. Im Hinblick auf den Personenschutz, insbesondere der Gefahr der Körperverletzung und/oder Sachschaden, darf auf diesen Sachverhalt nicht allein vertraut werden. Bis zum Wirksamwerden der eingebauten Überwachungen ist auf jeden Fall mit einer fehlerhaften Antriebsbewegung zu rechnen, deren Maß von der Art der Steuerung und des Betriebszustandes abhängen.

GEFAHR!

Gefahrbringende Bewegungen!

Lebensgefahr, Verletzungsgefahr, schwere Körperverletzung oder Sachschaden!

Der Personenschutz ist aus den oben genannten Gründen durch Überwachungen oder Maßnahmen, die anlagenseitig übergeordnet sind, sicherzustellen. Diese werden nach den spezifischen Gegebenheiten der Anlage einer Gefahren- und Fehleranalyse vom Anlagenbauer vorgesehen. Die für die Anlage geltenden Sicherheitsbestimmungen werden hierbei mit einbezogen. Durch Ausschalten, Umgehen oder fehlendes Aktivieren von Sicherheitseinrichtungen können willkürliche Bewegungen der Maschine oder andere Fehlfunktionen auftreten.

2.4.6 Schutz gegen Berühren heißer Teile

GEFAHR!

Heiße Oberflächen auf Gerätegehäuse möglich! Verletzungsgefahr! Verbrennungsgefahr!

Gehäuseoberfläche in der Nähe von heißen Wärmequellen nicht berühren! Verbrennungsgefahr!

Vor dem Zugriff Geräte nach dem Abschalten erst 10 Minuten abkühlen lassen.

Werden heiße Teile der Ausrüstung wie Gerätegehäuse, in denen sich Kühlkörper und Widerstände befinden, berührt, kann das zu Verbrennungen führen!

2.4.7 Schutz bei Handhabung und Montage

Die Handhabung und Montage bestimmter Teile und Komponenten in ungeeigneter Art und Weise kann unter ungünstigen Bedingungen zu Verletzungen führen.

GEFAHR!

Verletzungsgefahr durch unsachgemäße Handhabung!

Körperverletzung durch Quetschen, Scheren, Schneiden, Stoßen!

Hierfür gelten allgemeine Sicherhinweise:

Die allgemeinen Errichtungs- und Sicherheitsvorschriften zu Handhabung und Montage beachten.

Geeignete Montage- und Transporteinrichtungen verwenden.

Einklemmungen und Quetschungen durch geeignete Vorkehrungen vorbeugen.

Nur geeignetes Werkzeug verwenden. Sofern vorgeschrieben, Spezialwerkzeug benutzen.

Hebeeinrichtungen und Werkzeuge fachgerecht einsetzen.

Wenn erforderlich, geeignete Schutzausstattungen (zum Beispiel Schutzbrillen, Sicherheitsschuhe, Schutzhandschuhe) benutzen.

Nicht unter hängenden Lasten aufhalten.

Auslaufende Flüssigkeiten am Boden sofort wegen Rutschgefahr beseitigen.

3 Verkabelung und Steckerbelegung

3.1 Anschlussbelegungen

Das CAN-Interface ist bei der item Servo Positioning Controller C Serie bereits im Servoregler integriert und somit immer verfügbar.

Der CAN-Bus-Anschluss ist normgemäß als 9-poliger DSUB-Stecker (reglerseitig) ausgeführt.

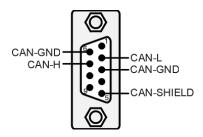


Abbildung 3.1: CAN-Steckverbinder für item C Serie

CAN-Bus-Verkabelung

Bei der Verkabelung der Regler über den CAN-Bus sollten sie unbedingt die nachfolgenden Informationen und Hinweise beachten, um ein stabiles, störungsfreies System zu erhalten. Bei einer nicht sachgemäßen Verkabelung können während des Betriebs Störungen auf dem CAN-Bus auftreten, die dazu führen, dass der Regler aus Sicherheitsgründen mit einem Fehler abschaltet.

120Ω -Abschlusswiderstand

In den Geräten der item C Serie ist kein Abschlusswiderstand integriert.

3.2 Verkabelungs-Hinweise

Der CAN-Bus bietet eine einfache und störungssichere Möglichkeit alle Komponenten einer Anlage miteinander zu vernetzen. Voraussetzung dafür ist allerdings, dass alle nachfolgenden Hinweise für die Verkablung beachtet werden.

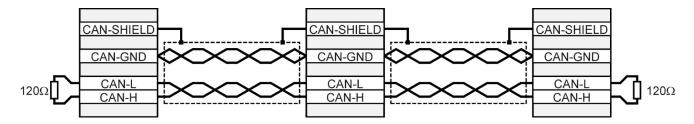


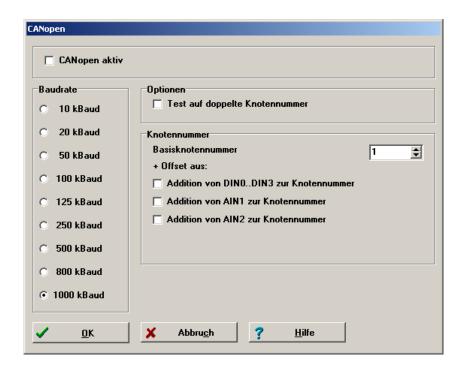
Abbildung 3.2: Verkabelungsbeispiel

- Die einzelnen Knoten des Netzwerkes werden grundsätzlich linienförmig miteinander verbunden, so dass das CAN-Kabel von Regler zu Regler durchgeschleift wird (Siehe Abbildung 3.2).
- An beiden Enden des CAN-Kabels muss jeweils genau ein Abschlusswiderstand von 120Ω +/- 5% vorhanden sein. Häufig ist in CAN-Karten oder in einer SPS bereits ein solcher Abschlusswiderstand eingebaut, der entsprechend berücksichtigt werden muss.
- Für die Verkabelung muss **geschirmtes** Kabel mit genau zwei **verdrillten** Adernpaaren verwendet werden.
 - Ein verdrilltes Aderpaar wird für den Anschluss von CAN-H und CAN-L verwendet.
 - Die Adern des anderen Paares werden **gemeinsam** für CAN-GND verwendet.
 - Der Schirm des Kabels wird bei allen Knoten an die CAN-Shield-Anschlüsse geführt.

Eine Tabelle mit den technischen Daten von verwendbaren Kabeln befindet sich am Ende dieses Kapitels, geeignete und von item empfohlene Kabel finden sie im Produkthandbuch

- Von der Verwendung von Zwischensteckern bei der CAN-Bus-Verkabelung wird abgeraten. Sollte dies dennoch notwendig sein, ist zu beachten, dass metallische Steckergehäuse verwendet werden, um den Kabelschirm zu verbinden.
- Um die Störeinkopplung so gering wie möglich zu halten, sollten grundsätzlich
 - Motorkabel nicht parallel zu Signalleitungen verlegt werden.
 - Motorkabel gemäß der Spezifikation von item ausgeführt sein.
 - Motorkabel ordnungsgemäß geschirmt und geerdet sein.
- Für weitere Informationen zum Aufbau einer störungsfreien CAN-Bus-Verkabelung verweisen wir auf die Controller Area Network protocol specification, Version 2.0 der Robert Bosch GmbH, 1991.
- Technische Daten CAN-Bus-Kabel:

2 Paare á 2 verdrillten Adern, d ≥0,22 mm² Geschirmt


Schleifenwiderstand < 0,2 Ω/m Wellenwiderstand 100-120 Ω

4 Aktivierung von CANopen

4.1 Übersicht

Die Aktivierung des CAN-Interface mit dem Protokoll CANopen erfolgt einmalig über die serielle Schnittstelle des Servoreglers. Das CAN-Protokoll wird über das CAN-Bus-Fenster des item Motion Soft™ aktiviert.

Es müssen insgesamt 3 verschiedene Parameter eingestellt werden:

Basis-Knotennummer

Zur eindeutigen Identifizierung im Netzwerk muss jedem Teilnehmer eine Knotennummer zugeteilt werden, die nur einmal im Netzwerk vorkommen darf. Über diese Knotennummer wird das Gerät adressiert.

Als zusätzliche Option besteht die Möglichkeit die Knotennummer des Antriebsreglers von der äußeren Beschaltung abhängig zu machen. Zur Basis-Knotennummer wird einmalig nach dem Reset die Eingangskombination der digitalen Eingänge DINO...DIN3 oder der analogen Eingänge AIN1 und AIN2 addiert. Dabei wird AIN1 mit einer Wertigkeit von 32 und AIN2 mit einer Wertigkeit von 64 hinzuaddiert, wenn der jeweilige Eingang auf Vref = 10V gebrückt ist.

Baudrate

Dieser Parameter bestimmt die auf dem CAN-Bus verwendete Baudrate in kBaud. Beachten Sie, dass hohe Baudraten eine niedrige maximale Kabellänge erfordern.

Optionen

Alle in einem CANopen-Netzwerk vorhandenen Geräte senden eine Einschaltmeldung (Bootup-Message) über den Bus, die die Knotennummer des Senders enthält. Empfängt der Regler eine solche Einschaltmeldung, die seiner eigenen Knotennummer entspricht, wird der Fehler 12-0 ausgelöst.

Letztlich kann das CANopen-Protokoll im Regler aktiviert werden. Beachten Sie, dass Sie die genannten Parameter nur ändern können, wenn das Protokoll deaktiviert ist.

Beachten Sie, dass die Parametrierung der CANopen-Funktionalität nach einem Reset nur erhalten bleibt, wenn der Parametersatz des Reglers gesichert wurde.

5 Zugriffsverfahren

5.1 Einleitung

CANopen stellt eine einfache und standardisierte Möglichkeit bereit, auf die Parameter des Servoreglers (z.B. den maximalen Motorstrom) zuzugreifen. Dazu ist jedem Parameter (*CAN-Objekt*) eine eindeutige Nummer (*Index und Subindex*) zugeordnet. Die Gesamtheit aller einstellbaren Parameter wird als *Objektverzeichnis* bezeichnet.

Für den Zugriff auf die CAN-Objekte über den CAN-Bus sind im Wesentlichen zwei Methoden verfügbar: Eine bestätigte Zugriffsart, bei der der Regler jeden Parameterzugriff quittiert (über sog. SDOs) und eine unbestätigte Zugriffsart, bei der keine Quittierung erfolgt (über sog. PDOs).

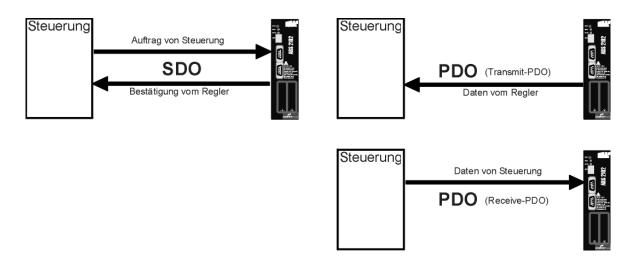
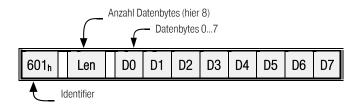


Abbildung 5.3: Zugriffsverfahren


In der Regel wird der Regler über SDO-Zugriffe sowohl parametriert als auch gesteuert. Für spezielle Anwendungsfälle sind darüber hinaus noch weitere Arten von Nachrichten (sog. Kommunikations-Objekte) definiert, die entweder vom Regler oder der übergeordneten Steuerung gesendet werden:

SD0	Service Data Object	Werden zur normalen Parametrierung des Reglers verwendet.
PDO	Process Data Object	Schneller Austausch von Prozessdaten (z.B. Istdrehzahl) möglich.
SYNC	Synchronization	Synchronisierung mehrerer CAN-Knoten

	Message	
EMCY	Emergency Message	Übermittlung von Fehlermeldungen.
NMT	Network Management	Netzwerkdienst: Es kann z.B. auf alle CAN- Knoten gleichzeitig eingewirkt werden.
HEARTBEAT	Error Control Protocol	Überwachung der Kommunikationsteilnehmer durch regelmäßige Nachrichten.

Jede Nachricht, die auf dem CAN-Bus verschickt wird, enthält eine Art Adresse, mit dessen Hilfe festgestellt werden kann, für welchen Bus-Teilnehmer die Nachricht gedacht ist. Diese Nummer wird als <u>Identifier</u> bezeichnet. Je niedriger der Identifier, desto größer ist die Priorität der Nachricht. Für die oben genannten Kommunikationsobjekte sind jeweils Identifier festgelegt. Die folgende Skizze zeigt den prinzipiellen Aufbau einer CANopen-Nachricht:

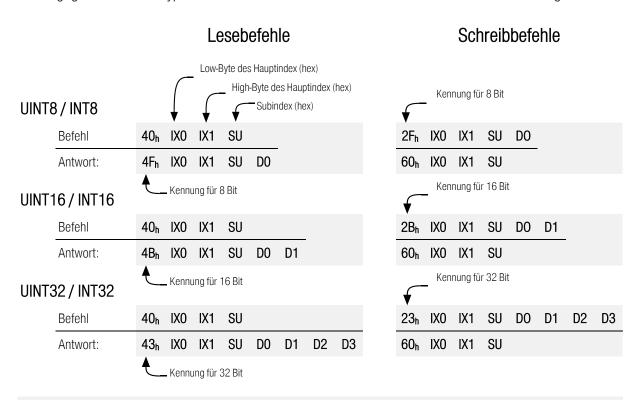
5.2 SDO-Zugriff

Über die **S**ervice-**D**ata-**O**bjekte (SDO) kann auf das Objektverzeichnis des Reglers zugegriffen werden. Dieser Zugriff ist besonders einfach und übersichtlich. Es wird daher empfohlen, die Applikation zunächst nur mit SDOs aufzubauen und erst später einige Objektzugriffe auf die zwar schnelleren, aber auch komplizierteren **P**rocess-**D**ata-**O**bjekte (PDOs) umzustellen.

SDO-Zugriffe gehen immer von der übergeordneten Steuerung (Host) aus. Dieser sendet an den Regler entweder einen Schreibbefehl, um einen Parameter des Objektverzeichnisses zu ändern, oder einen Lesebefehl, um einen Parameter auszulesen. Zu jedem Befehl erhält der Host eine Antwort, die entweder den ausgelesenen Wert enthält oder – im Falle eines Schreibbefehls – als Quittung dient.

Damit der Regler erkennt, dass der Befehl für ihn bestimmt ist, muss der Host den Befehl mit einem bestimmten Identifier senden. Dieser setzt sich aus der Basis 600_h + Knotennummer des betreffenden Reglers zusammen. Der Regler antwortet entsprechend mit dem Identifier 580_h + Knotennummer.

Der Aufbau der Befehle bzw. der Antworten hängt vom Datentyp des zu lesenden oder schreibenden Objekts ab, da entweder 1, 2 oder 4 Datenbytes gesendet bzw. empfangen werden müssen. Folgende Datentypen werden unterstützt


UINT8 8-Bit-Wert ohne Vorzeichen 0 ... 255

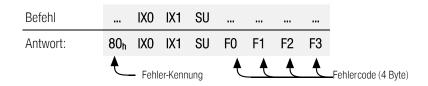
INT8	8-Bit-Wert mit Vorzeichen	-128	 127
UINT16	16-Bit-Wert ohne Vorzeichen	0	 65535
INT16	16-Bit-Wert mit Vorzeichen	-32768	 32767
UINT32	32-Bit-Wert ohne Vorzeichen	0	 $(2^{32}-1)$
INT32	32-Bit-Wert mit Vorzeichen	$-(2^{31})$	 $(2^{31}-1)$

5.2.1 SDO-Sequenzen zum Lesen und Schreiben

Um Objekte dieser Zahlentypen auszulesen oder zu beschreiben sind die nachfolgend aufgeführten Sequenzen zu verwenden. Die Kommandos, um einen Wert in den Regler zu schreiben, beginnen je nach Datentyp mit einer unterschiedlichen Kennung. Die Antwort-Kennung ist hingegen stets die gleiche. Lesebefehle beginnen immer mit der gleichen Kennung und der Regler antwortet je nach zurückgegebenem Datentyp unterschiedlich. Alle Zahlen sind in hexadezimaler Schreibweise gehalten.

BEISPIEL						
UINT8 / INT8	Lesen von Obj. 6061_00 _h Rückgabe-Daten: 01 _h	Schreiben von Obj. 1401_02 _h Daten: EF _h				
Befehl	40 _h 61 _h 60 _h 00 _h	2F _h 01 _h 14 _h 02 _h EF _h				
Antwort:	4F _h 61 _h 60 _h 00 _h 01 _h	60 _h 01 _h 14 _h 02 _h				

UINT16 / INT16	Lesen von Obj. 6041_00 _h Rückgabe-Daten: 1234 _h	Schreiben von Obj. 6040_00 _h Daten: 03E8 _h		
Befehl	40 _h 41 _h 60 _h 00 _h	$2B_h$ 40_h 60_h 00_h $E8_h$ 03_h		
Antwort:	4B _h 41 _h 60 _h 00 _h 34 _h 12 _h	60 _h 40 _h 60 _h 00 _h		
UINT32 / INT32	Lesen von Obj. 6093_01 _h Rückgabe-Daten: 12345678 _h	Schreiben von Obj. 6093_01 _h Daten: 12345678 _h		
Befehl	40 _h 93 _h 60 _h 01 _h	$23_h \ 93_h \ 60_h \ 01_h \ 78_h \ 56_h \ 34_h \ 12_h$		
Antwort:	43 _h 93 _h 60 _h 01 _h 78 _h 56 _h 34 _h 12 _h	60 _h 93 _h 60 _h 01 _h		

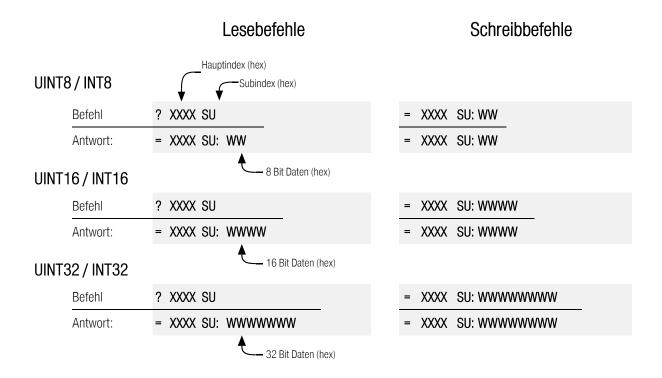


Die Quittierung vom Regler muss in jedem Fall abgewartet werden! Erst wenn der Regler die Anforderung quittiert hat, dürfen weitere Anforderungen gesendet werden.

5.2.2 SDO-Fehlermeldungen

Im Falle eines Fehlers beim Lesen oder Schreiben (z.B. weil der geschriebene Wert zu groß ist), antwortet der Regler mit einer Fehlermeldung anstelle der Quittierung:

Fehlercode F3 F2 F1 F0	Bedeutung
05 03 00 00 _h	Protokollfehler: Toggle Bit wurde nicht geändert
05 04 00 01 _h	Protokollfehler: client / server command specifier ungültig oder unbekannt
06 06 00 00 _h	Zugriff fehlerhaft aufgrund eine Hardware-Problems *1)
06 01 00 00 _h	Zugriffsart wird nicht unterstützt.
06 01 00 01 _h	Lesezugriff auf ein Objekt, dass nur geschrieben werden kann
06 01 00 02 _h	Schreibzugriff auf ein Objekt, dass nur gelesen werden kann
06 02 00 00 _h	Das angesprochene Objekt existiert nicht im Objektverzeichnis
06 04 00 41 _h	Das Objekt darf nicht in ein PDO eingetragen werden (z.B. ro- Objekt in RPDO)
06 04 00 42 _h	Die Länge der in das PDO eingetragenen Objekte überschreitet die PDO-Länge
06 04 00 43 _h	Allgemeiner Parameterfehler
06 04 00 47 _h	Überlauf einer internen Größe / Genereller Fehler
06 07 00 10 _h	Protokollfehler: Länge des Service-Parameters stimmt nicht überein
06 07 00 12 _h	Protokollfehler: Länge des Service-Parameters zu groß
06 07 00 13 _h	Protokollfehler: Länge des Service-Parameters zu klein
06 09 00 11 _h	Der angesprochene Subindex existiert nicht
06 09 00 30 _h	Die Daten überschreiten den Wertebereich des Objekts
06 09 00 31 _h	Die Daten sind zu groß für das Objekt
06 09 00 32 _h	Die Daten sind zu klein für das Objekt
06 09 00 36 _h	Obere Grenze ist kleiner als untere Grenze
08 00 00 20 _h	Daten können nicht übertragen oder gespeichert werden *1)
08 00 00 21 _h	Daten können nicht übertragen oder gespeichert werden, da der Regler lokal arbeitet
08 00 00 22 _h	Daten können nicht übertragen oder gespeichert werden, da sich der Regler dafür nicht im richtigen Zustand


Fehlercode	Bedeutung	
F3 F2 F1 F0		
	befindet *3)	
08 00 00 23 _h	Es ist kein Object Dictionary vorhanden *2)	

- Werden gemäß DS301 bei fehlerhaftem Zugriff auf store_parameters / restore_parameters zurückgegeben.
- Dieser Fehler wird z.B. zurückgegeben, wenn ein anderes Bussystem den Regler kontrolliert oder der Parameterzugriff nicht erlaubt ist.
- "Zustand" ist hier allgemein zu verstehen: Es kann sich dabei sowohl um die falsche Betriebsart handeln, als auch um ein nicht vorhandenes Technologie-Modul o.ä.

5.2.3 Simulation von SDO-Zugriffen über RS232

Die Firmware der Servoregler bietet die Möglichkeit, SDO-Zugriffe über die RS232-Schnittstelle zu simulieren. So können in der Testphase Objekte nach dem Einschreiben über den CAN-Bus über die RS232-Schnittstelle gelesen und kontrolliert werden. Durch Verwendung des Transfer-Fensters des item Motion Soft™ (unter *Datei/Transfer*) wird so die Applikationserstellung erleichtert.


Die Syntax der Befehle lautet:

Lesefehler

Schreibfehler

¹⁾ Die Antwort ist im Fehlerfall für alle 3 Schreibbefehle (8, 16, 32 Bit) gleich aufgebaut.

Die Befehle werden als Zeichen ohne jegliche Leerzeichen eingegeben.

Verwenden Sie diese Testbefehle niemals in Applikationen!

Der Zugriff über RS232 dient lediglich zu Testzwecken und ist <u>nicht für eine echtzeitfähige</u> Kommunikation geeignet.

Darüber hinaus kann die Syntax der Testbefehle jederzeit geändert werden.

5.3 PDO-Message

Mit Process-Data-Objekten (PDOs) können Daten ereignisgesteuert übertragen werden. Das PDO überträgt dabei einen oder mehrere vorher festgelegte Parameter. Anders als bei einem SDO erfolgt bei der Übertragung eines PDOs keine Quittierung. Nach der PDO-Aktivierung müssen daher alle Empfänger jederzeit eventuell ankommende PDOs verarbeiten können. Dies bedeutet meistens einen erheblichen Softwareaufwand im Host-Rechner. Diesem Nachteil steht der Vorteil gegenüber, dass der Host-Rechner die durch ein PDO übertragenen Parameter nicht zyklisch abzufragen braucht, was zu einer starken Verminderung der CAN-Busauslastung führt.

BEISPIEL

Der Host-Rechner möchte wissen, wann der Regler eine Positionierung von A nach B abgeschlossen hat.

Bei der Verwendung von SDOs muss er hierzu ständig, beispielsweise jede Millisekunde, das Objekt **statusword** abfragen, womit er die Buskapazität stark auslastet.

Bei der Verwendung eines PDOs wird der Regler schon beim Start der Applikation so parametriert, dass er bei jeder Veränderung des Objektes **statusword** ein PDO absetzt, in dem das Objekt **statusword** enthalten ist.

Statt ständig nachzufragen, wird dem Host-Rechner somit automatisch eine entsprechende Meldung zugestellt, sobald das Ereignis eingetreten ist.

Folgende Typen von PDOs werden unterschieden:

Transmit-PD0	(T-PDO)	Regler	→ Host	Regler sendet PDO bei Auftreten eines bestimmten Ereignisses
Receive-PD0	(R-PDO)	Host	→ Regler	Regler wertet PDO bei Auftreten eines bestimmen Ereignisses aus

Der Regler verfügt über vier Transmit- und vier Receive-PDOs.

In die PDOs können nahezu alle Objekte des Objektverzeichnisses eingetragen (gemappt) werden, d.h. das PDO enthält als Daten z.B. den Drehzahl-Istwert, den Positions-Istwert o.ä. Welche Daten übertragen werden, muss dem Regler vorher mitgeteilt werden, da das PDO lediglich Nutzdaten und keine Information über die Art des Parameters enthält. In der unteren Beispiel würde in den Datenbytes 0...3 des PDOs der Positions-Istwert und in den Bytes 4...7 der Drehzahl-Istwert übertragen.

Auf diese Art können nahezu beliebige Datentelegramme definiert werden. Die folgenden Kapitel beschreiben die dazu nötigen Einstellungen.

Beschreibung der Objekte 5.3.1

Identifier des PDOs

COB_ID_used_by_PDO

In dem Objekt COB ID used by PDO ist der Identifier einzutragen, auf dem das jeweilige PDO gesendet bzw. empfangen werden soll. Ist Bit 31 gesetzt, ist das jeweilige PDO deaktiviert. Dies ist die Voreinstellung für alle PDOs.

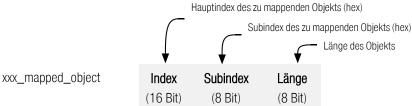
Die COB-ID darf nur geändert werden, wenn das PDO deaktiviert, d.h. Bit 31 gesetzt ist. Ein anderer Identifier als aktuell im Regler eingestellt darf daher nur geschrieben werden, wenn gleichzeitig Bit 31 gesetzt ist.

Das gesetzte Bit 30 beim Lesen des Identifiers zeigt an, dass das Objekt nicht durch ein Remoteframe abgefragt werden kann. Dieses Bit wird beim Schreiben ignoriert und ist beim Lesen immer gesetzt.

Anzahl zu übertragender Objekte

number_of_mapped_objects

Dieses Obiekt gibt an, wie viele Obiekte in das entsprechende PDO gemappt werden sollen. Folgende Einschränkungen sind zu beachten:


- Es können pro PDO maximal 4 Objekte gemappt werden
- Ein PDO darf über maximal 64 Bit (8 Byte) verfügen.

Zu übertragende Objekte

first mapped object ... fourth mapped object

Für jedes Objekt, das im PDO enthalten sein soll muss dem Regler der entsprechende Index, der Subindex und die Länge mitgeteilt werden. Die Längenangabe muss mit der Längenangabe im Object Dictionary übereinstimmen. Teile eines Objekts können nicht gemappt werden.

Die Mapping-Informationen besitzen folgendes Format:

Zur Vereinfachung des Mappings ist folgendes Vorgehen vorgeschrieben:

- 1.) Die Anzahl der gemappten Objekte wird auf O gesetzt.
- 2.) Die Parameter first mapped object...fourth mapped object dürfen beschrieben werden (Die Gesamtlänge aller Objekte ist in dieser Zeit nicht relevant).
- 3.) Die Anzahl der gemappten Objekte wird auf einen Wert zwischen 1...4

gesetzt. Die Länge all dieser Objekte darf jetzt 64 Bit nicht überschreiten.

Übertragungsart

transmission_type und inhibit_time

Für jedes PDO kann festgelegt werden, welches Ereignis zum Aussenden (Transmit-PDO) bzw. Auswerten (Receive-PDO) einer Nachricht führt:

Wert	Bedeutung	Erlaubt bei
01 _h -F0 _h	SYNC-Message Der Zahlenwert gibt an, wie viele SYNC-Nachrichten eingetroffen sein müssen, bevor das PDO - gesendet (T-PDO) bzw. - ausgewertet (R-PDO) wird.	TPDOs RPDOs
FEh	Zyklisch Das Transfer-PDO wird vom Regler zyklisch aktualisiert und gesendet. Die Zeitspanne wird durch das Objekt inhibit_time festgelegt. Receive-PDOs werden hingegen unmittelbar nach Empfang ausgewertet.	TPDOs (RPDOs)
FFh	Änderung Das Transfer-PDO wird gesendet, wenn sich in den Daten des PDOs mindestens 1 Bit geändert hat. Mit inhibit_time kann zusätzlich der minimale Abstand zwischen dem Absenden zweier PDOs in 100µs-Schritten festgelegt werden.	TPDOs

Die Verwendung aller anderen Werte ist nicht zulässig.

Maskierung

transmit_mask_high und transmit_mask_low

Wird als transmission_type "Änderung" gewählt, wird das TPDO immer gesendet, wenn sich mindestens 1 Bit des TPDOs ändert. Häufig wird es aber benötigt, dass das TPDO nur gesendet wird, wenn sich <u>bestimmte</u> Bits geändert haben. Daher kann das TPDO mit einer Maske versehen werden: Nur die Bits des TPDOs, die in der Maske auf "1" gesetzt sind, werden zur Auswertung, ob sich das PDO geändert hat herangezogen. Da diese Funktion herstellerspezifisch ist, sind als Defaultwert alle Bits der Masken gesetzt.

BEISPIEL

Folgende Objekte sollen zusammen in einem PDO übertragen werden:

Name des Objekts	Index_Subindex	Bedeutung
statusword	6041 _h _00 _h	Reglersteuerung
modes_of_operation_display	6061 _h _00 _h	Betriebsart
digital_inputs	60FD _h _00 _h	Digitale Eingänge

Es soll das erste Transmit-PDO (TPDO 1) verwendet werden, welches immer gesendet werden soll, wenn sich eines der digitalen Eingänge ändert, allerdings maximal alle 10 ms. Als Identifier für dieses PDO soll 187_h verwendet werden.

·
Falls das PDO aktiv ist, muss es zuerst deaktiviert werden.
Schreiben des Identifiers mit gesetztem Bit 31 (PDO ist
deaktiviert):

PDO deaktivieren

1.)

⇒ cob_id_used_by_pdo = C0000187_h

2.) Anzahl der Objekte löschen

Damit das Objektmapping geändert werden darf, Anzahl der Objekte auf Null setzen.

⇒ number_of_mapped_objects = 0

3.) Objekte, die gemappt werden sollen, parametrieren

Die oben aufgeführten Objekte müssen jeweils zu einem 32 Bit-Wert zusammengesetzt werden:

Index = 6041_h	Subin. = 00_h	Länge = 10 _h
Index =6061 _h	Subin. = 00 _h	Länge = 08 _h
Index =60FD _h	Subin. = 00 _h	Länge = 20 _h

⇒ first_mapped_object $=60410010_{h}$ ⇒ second_mapped_object =60610008_h

=60FD0020_h⇒ third_mapped_object

4.) Anzahl der Objekte parametrieren

Es sollen 3 Objekte im PDO enthalten sein

⇒ number_of_mapped_objects =3_h

Übertragungsart parametrieren 5.)

Das PDO soll bei Änderung (der digitalen Eingänge) gesendet werden.

⇒ transmission_type =

 FF_h

Damit nur die Änderung der digitalen Eingänge zum Senden führt, wird das PDO maskiert, so dass nur die 16 Bits des Objekts 60FD_h "durchkommen".

⇒ transmit_mask_high = ⇒ transmit_mask_low =

00FFFF00h 00000000h

Das PDO soll höchstens alle 10 ms (100×100µs) gesendet werden.

⇒ inhibit_time = 64_h

6.) Identifier parametrieren

Das PDO soll mit Identifier 187h gesendet werden.

Schreiben des neuen Identifier und Aktivieren des PDOs durch Löschen von Bit 31:

40000187h ⇒ cob_id_used_by_pdo =

Beachten Sie, dass die Parametrierung der PDOs generell nur geändert werden darf, wenn der Netzwerkstatus (NMT) nicht **operational** ist. Siehe hierzu auch Kapitel 5.6.

5.3.2 Objekte zur PDO-Parametrierung

In den Reglern der item C Serie sind insgesamt 4 Transmit und 4 Receive-PDOs verfügbar. Die einzelnen Objekte, um diese PDOs zu parametrieren sind jeweils für alle 4 TPDOs und alle 4 RPDOs gleich. Daher ist im Folgenden nur die Parameterbeschreibung des ersten TPDOs explizit aufgeführt. Sie ist sinngemäß auch für die anderen PDOs zu verwenden, die im Anschluss tabellarisch aufgeführt sind:

Index	1800 _h
Name	transmit_pdo_parameter_tpdo1
Object Code	RECORD
No. of Elements	3

RECORD_MAIN

Sub-Index	01 _h
Description	cob_id_used_by_pdo_tpdo1
Data Type	UINT32
Access	rw
PDO Mapping	no
Units	-
Value Range	181 _h 1FF _h , Bit 30 und 31 dürfen gesetzt sein
Default Value	C0000181 _h

RECORD_Eintrag

Sub-Index	02 _h
Description	transmission_type_tpdo1
Data Type	UINT8
Access	rw
PDO Mapping	no
Units	-
Value Range	08C _h , FE _h , FF _h
Default Value	FF _h

RECORD_Eintrag

Sub-Index	03 _h
Description	inhibit_time_tpdo1
Data Type	UINT16
Access	rw
PDO Mapping	no
Units	100μs (i.e. 10 = 1ms)

RECORD_Eintrag

Value Range	-
Default Value	0

Index	1A00 _h
Name	transmit_pdo_mapping_tpdo1
Object Code	RECORD
No. of Elements	2

RECORD_MAIN

Sub-Index	00 _h
Description	number_of_mapped_objects_tpdo1
Data Type	UINT8
Access	rw
PDO Mapping	no
Units	-
Value Range	04
Default Value	siehe Tabelle

RECORD_Eintrag

Sub-Index	01 _h
Description	first_mapped_object_tpdo1
Data Type	UINT32
Access	rw
PDO Mapping	no
Units	-
Value Range	-
Default Value	siehe Tabelle

RECORD_Eintrag

Sub-Index	02 _h
Description	second_mapped_object_tpdo1
Data Type	UINT32
Access	rw
PDO Mapping	no
Units	-
Value Range	-
Default Value	siehe Tabelle

RECORD_Eintrag

Sub-Index	03 _h
Description	third_mapped_object_tpdo1
Data Type	UINT32
Access	rw
PDO Mapping	no
Units	-

RECORD_Eintrag

Value Range	-
Default Value	siehe Tabelle

Sub-Index	04 _h
Description	fourth_mapped_object_tpdo1
Data Type	UINT32
Access	rw
PDO Mapping	no
Units	-
Value Range	-
Default Value	siehe Tabelle

RECORD_Eintrag

Beachten Sie, dass die Objekt-Gruppen transmit_pdo_parameter_xxx und transmit_pdo_mapping_xxx nur beschrieben werden können, wenn das PDO deaktiviert ist (Bit 31 in cob_id_used_by_pdo_xxx gesetzt)

1. Transmit-PDO

Index	Comment	Type	Acc.	Default Value
1800 _h _00 _h	number of entries	UINT8	ro	03 _h
1800 _h _01 _h	COB-ID used by PDO	UINT32	rw	C0000181 _h
1800 _h _02 _h	transmission type	UINT8	rw	FF _h
1800 _h _03 _h	inhibit time (100 µs)	UINT16	rw	0000_{h}
1A00 _h _00 _h	number of mapped objects	UINT8	rw	01 _h
1A00 _h _01 _h	first mapped object	UINT32	rw	60410010 _h
1A00 _h _02 _h	second mapped object	UINT32	rw	00000000_{h}
1A00 _h _03 _h	third mapped object	UINT32	rw	00000000_{h}
1A00 _h _04 _h	fourth mapped object	UINT32	rw	00000000_{h}

2. Transmit-PDO

Index	Comment	Type	Acc.	Default Value
1801 _h _00 _h	number of entries	UINT8	ro	03 _h
1801 _h _01 _h	COB-ID used by PDO	UINT32	rw	C0000281h
1801 _h _02 _h	transmission type	UINT8	rw	FF _h
1801 _h _03 _h	inhibit time (100 µs)	UINT16	rw	0000 _h
1A01 _h _00 _h	number of mapped objects	UINT8	rw	02 _h
1A01 _h _01 _h	first mapped object	UINT32	rw	60410010 _h
1A01 _h _02 _h	second mapped object	UINT32	rw	60610008 _h
1A01 _h _03 _h	third mapped object	UINT32	rw	00000000_h
1A01 _h _04 _h	fourth mapped object	UINT32	rw	00000000_{h}

3. Transmit-PDO

Index	Comment	Type	Acc.	Default Value
1802 _h _00 _h	number of entries	UINT8	ro	03 _h
1802 _h _01 _h	COB-ID used by PDO	UINT32	rw	C0000381 _h
1802 _h _02 _h	transmission type	UINT8	rw	FF_h
1802 _h _03 _h	inhibit time (100 µs)	UINT16	rw	0000h
1A02 _h _00 _h	number of mapped objects	UINT8	rw	02 _h

1A02h 01h	first mapped object	UINT32	rw	60410010h
IAUZn_UIn	iii st mapped object	0111132	IVV	00410010h
1A02 _h _02 _h	second mapped object	UINT32	rw	60640020h
1A02 _h _03 _h	third mapped object	UINT32	rw	00000000_{h}
1A02 _h _04 _h	fourth mapped object	UINT32	rw	0000000 _h

4. Transmit-PDO

Index	Comment	Type	Acc.	Default Value
1803 _h _00 _h	number of entries	UINT8	ro	03 _h
1803 _h _01 _h	COB-ID used by PDO	UINT32	rw	C0000481h
1803 _h _02 _h	transmission type	UINT8	rw	FF _h
1803 _h _03 _h	inhibit time (100 µs)	UINT16	rw	0000_{h}
1A03 _h _00 _h	number of mapped objects	UINT8	rw	02 _h
1A03 _h _01 _h	first mapped object	UINT32	rw	60410010 _h
1A03 _h _02 _h	second mapped object	UINT32	rw	606C0020 _h
1A03 _h _03 _h	third mapped object	UINT32	rw	00000000_{h}
1A03 _h _04 _h	fourth mapped object	UINT32	rw	0000000 _h

tpdo_1_transmit_mask

Index	Comment	Type	Acc.	Default Value
2014 _h _00 _h	number of entries	UINT8	ro	02 _h
2014 _h _01 _h	tpdo_1_transmit_mask_low	UINT32	rw	FFFFFFFh
2014 _h _02 _h	tpdo_1_transmit_mask_high	UINT32	rw	FFFFFFFh

tpdo_2_transmit_mask

Index	Comment	Type	Acc.	Default Value
2015 _h _00 _h	number of entries	UINT8	ro	02h
2015h_01h	tpdo_2_transmit_mask_low	UINT32	rw	FFFFFFFh
2015h 02h	todo 2 transmit mask high	UINT32	rw	FFFFFFFh

tpdo_3_transmit_mask

Index	Comment	Type	Acc.	Default Value
2016 _h _00 _h	number of entries	UINT8	ro	02h
2016 _h _01 _h	tpdo_3_transmit_mask_low	UINT32	rw	FFFFFFFh
2016 _h _02 _h	tpdo_3_transmit_mask_high	UINT32	rw	FFFFFFFh

tpdo_4_transmit_mask

Index	Comment	Type	Acc.	Default Value
2017 _h _00 _h	number of entries	UINT8	ro	02h
2017 _h _01 _h	tpdo_4_transmit_mask_low	UINT32	rw	FFFFFFFh
2017h 02h	todo 4 transmit mask high	UINT32	rw	FFFFFFFh

1. Receive PDO

Index	Comment	Type	Acc.	Default Value
1400 _h _00 _h	number of entries	UINT8	ro	02 _h
1400 _h _01 _h	COB-ID used by PDO	UINT32	rw	C0000201 _h
1400 _h _02 _h	transmission type	UINT8	rw	FF _h
1600 _h _00 _h	number of mapped objects	UINT8	rw	01 _h
1600 _h _01 _h	first mapped object	UINT32	rw	60400010 _h
1600 _h _02 _h	second mapped object	UINT32	rw	0000000 _h
1600 _h _03 _h	third mapped object	UINT32	rw	0000000 _h
1600 _h _04 _h	fourth mapped object	UINT32	rw	0000000 _h

2. Receive PDO

Index	Comment	Type	Acc.	Default Value
1401 _h _00 _h	number of entries	UINT8	ro	02 _h
1401 _h _01 _h	COB-ID used by PDO	UINT32	rw	C0000301 _h
1401 _h _02 _h	transmission type	UINT8	rw	FFh
1601 _h _00 _h	number of mapped objects	UINT8	rw	02 _h
1601 _h _01 _h	first mapped object	UINT32	rw	60400010 _h
1601 _h _02 _h	second mapped object	UINT32	rw	60600008 _h
1601 _h _03 _h	third mapped object	UINT32	rw	00000000 _h
1601 _h _04 _h	fourth mapped object	UINT32	rw	00000000 _h

3. Receive PDO

Index	Comment	Type	Acc.	Default Value
1402 _h _00 _h	number of entries	UINT8	ro	02 _h
1402 _h _01 _h	COB-ID used by PDO	UINT32	rw	C0000401 _h
1402 _h _02 _h	transmission type	UINT8	rw	FF _h
1602 _h _00 _h	number of mapped objects	UINT8	rw	02 _h
1602 _h _01 _h	first mapped object	UINT32	rw	60400010 _h
1602 _h _02 _h	second mapped object	UINT32	rw	607A0020 _h
1602 _h _03 _h	third mapped object	UINT32	rw	00000000_{h}
1602 _h _04 _h	fourth mapped object	UINT32	rw	00000000_{h}

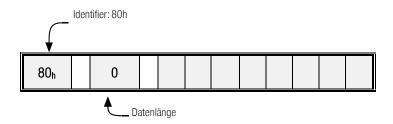
4. Receive PDO

Index	Comment	Type	Acc.	Default Value
1403 _h _00 _h	number of entries	UINT8	ro	02 _h
1403 _h _01 _h	COB-ID used by PDO	UINT32	rw	C0000501 _h
1403 _h _02 _h	transmission type	UINT8	rw	FF_h
1603 _h _00 _h	number of mapped objects	UINT8	rw	02 _h
1603 _h _01 _h	first mapped object	UINT32	rw	60400010 _h
1603 _h _02 _h	second mapped object	UINT32	rw	60FF0020 _h
1603 _h _03 _h	third mapped object	UINT32	rw	00000000_{h}
1603 _h _04 _h	fourth mapped object	UINT32	rw	00000000_{h}

5.3.3 Aktivierung der PDOs

Damit der Regler PDOs sendet oder empfängt müssen folgende Punkte erfüllt sein:

- Das Objekt number_of_mapped_objects muß ungleich Null sein.
- Im Objekt cob_id_used_for_pdos muss das Bit 31 gelöscht sein.
- Der Kommunikationsstatus des Reglers muss operational sein (siehe Kapitel 5.6, Netzwerkmanagement: NMT-Service)


Damit PDOs parametriert werden können, müssen folgende Punkte erfüllt sein:

Der Kommunikationsstatus des Reglers darf nicht operational sein.

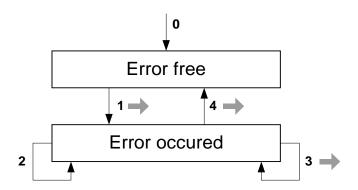
5.4 SYNC-Message

Mehrere Geräte einer Anlage können miteinander synchronisiert werden. Hierzu sendet eines der Geräte (meistens die übergeordnete Steuerung) periodisch Synchronisations-Nachrichten aus. Alle angeschlossenen Regler empfangen diese Nachrichten und verwenden sie für die Behandlung der PDOs (siehe Kapitel 5.3).

Der Identifier, auf dem der Regler die SYNC-Message empfängt, ist fest auf 080_h eingestellt. Der Identifier kann über das Objekt **cob_id_sync** ausgelesen werden.

Index	1005 _h	VAR_Eintrag
Name	cob_id_sync	
Object Code	VAR	
Data Type	UINT32	
		•
Access	rw	VAR_Eintrag
PDO Mapping	no	_ 3
Units	_	
Value Range	80000080h, 00000080h	
Default Value	00000080 _h	

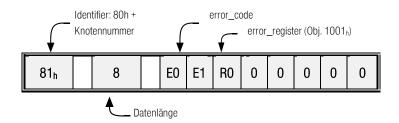
5.5 EMERGENCY-Message


Der Antriebsregler überwacht die Funktion seiner wesentlichen Baugruppen. Hierzu zählen die Spannungsversorgung, die Endstufe, die Winkelgeberauswertung und die Technologiesteckplätze. Außerdem werden laufend der Motor (Temperatur, Winkelgeber) und die Endschalter überprüft. Auch Fehlparametrierungen können zu Fehlermeldungen führen (Division durch Null etc.).

Beim Auftreten eines Fehlers wird in der Anzeige des Reglers die Fehlernummer angezeigt. Wenn mehrere Fehlermeldungen gleichzeitig auftreten, so wird in der Anzeige immer die Nachricht mit der höchsten Priorität (der geringsten Nummer) angezeigt.

5.5.1 Übersicht

Der Regler sendet beim Auftreten eines Fehlers oder wenn eine Fehlerquittierung durchgeführt wird, eine EMERGENCY-Message. Der Identifier dieser Nachricht wird aus dem Identifier 80_h und der Knotennummer des betroffenen Reglers zusammengesetzt.


Nach einem Reset befindet sich der Regler im Zustand *Error free* (den er ggf. sofort wieder verlässt, weil von Anfang an ein Fehler vorhanden ist). Folgende Zustandsübergänge sind möglich:

Nr.	Ursache	Bedeutung
0	Initialisierung abgeschlossen	
1	Fehler tritt auf	Es lag kein Fehler vor und ein Fehler tritt auf. Ein EMERGENCY- Telegramm mit dem Fehlercode des aufgetretenen Fehlers wird gesendet
2	Fehlerquittierung	Eine Fehlerquittierung (siehe Kap. 7.1.3.1) wird versucht, aber nicht alle Ursachen sind behoben.
3	Fehler tritt auf	Es liegt schon ein Fehler vor und ein weiterer Fehler tritt auf. Ein EMERGENCY- Telegramm mit dem Fehlercode des neuen Fehlers wird gesendet.
4	Fehlerquittierung	Eine Fehlerquittierung wird versucht und alle Ursachen sind behoben. Es wird ein EMERGENCY- Telegramm mit dem Fehlercode 0000 gesendet.

5.5.2 Aufbau der EMERGENCY-Message

Die EMERGENCY-Message besteht aus acht Datenbytes, wobei in den ersten beiden Bytes ein **error_code** steht, die in folgender Tabelle aufgeführt sind. Im dritten Byte steht ein weiterer Fehlercode (Objekt 1001_h). Die restlichen fünf Bytes enthalten Nullen.

Folgende Fehlercodes können auftreten:

error_code (hex)	Anzeige	Bedeutung
0000	-	Regler ist fehlerfrei
6180	E 01 0	Stack Overflow
3220	E 02 0	Unterspannung Zwischenkreis
4310	E 03 x	Übertemperatur Motor
4210	E 04 0	Übertemperatur Leistungsteil
4280	E 04 1	Übertemperatur Zwischenkreis
5114	E 05 0	Ausfall interne Spannung 1
5115	E 05 1	Ausfall interne Spannung 2
5116	E 05 2	Ausfall Treiberversorgung
5410	E 05 3	Unterspannung digitale I/O
5410	E 05 4	Überstrom digitale I/O
2320	E 06 x	Kurzschluss Endstufe
3210	E 07 0	Überspannung
7380	E 08 0	Winkelgeberfehler Resolver
7382	E 08 2	Fehler Spursignale Z0 Inkrementalgeber
7383	E 08 3	Fehler Spursignale Z1 Inkrementalgeber
7384	E 08 4	Fehler Spursignale digitaler Inkrementalgeber
7385	E 08 5	Fehler Spursignale Hallgebersignale Inkrementalgeber
7386	E 08 6	Kommunikationsfehler Winkelgeber
7387	E 08 7	Signalamplitude Inkrementalspur fehlerhaft
7388	E 08 8	Interner Winkelgeberfehler
7389	E 08 9	Winkelgeber an X2b wird nicht unterstützt
73A1	E 09 0	Winkelgeberparametersatz Typ item C Serie
73A2	E 09 1	Winkelgeberparametersatz kann nicht decodiert werden
73A3	E 09 2	Winkelgeberparametersatz: Version unbekannt
73A4	E 09 3	Winkelgeberparametersatz: Datenstruktur defekt
73A5	E 09 7	EEPROM Winkelgeber schreibgeschützt
73A6	E 09 9	EEPROM Winkelgeber zu klein
8A80	E 11 0	Referenzfahrt: Fehler beim Start
8A81	E 11 1	Fehler während einer Referenzfahrt
8A82	E 11 2	Referenzfahrt: Nullimpulsfehler
8A83	E 11 3	Referenzfahrt: Zeitüberschreitung
8A84	E 11 4	Referenzfahrt: Falscher / ungültiger Endschalter
8A85	E 11 5	Referenzfahrt: I ² t / Schleppfehler
8A86	E 11 6	Referenzfahrt: Ende der Suchstrecke
8180	E 12 0	CAN-Bus: Doppelte Knotennummer
8120	E 12 1	Kommunikationsfehler CAN: BUS OFF
8181 8182	E 12 2	Kommunikationsfehler CAN beim Senden
	E 12 3	Kommunikationsfehler CAN beim Empfangen Division durch 0
6185	E 15 0	=
6186	E 15 1	Bereichüberschreitung (Über-/Unterlauf)
6181 6182	E 16 0 E 16 1	Programmausführung fehlerhaft Illegaler Interrupt
6187	E 16 2	Initialisierungsfehler
6183	E 16 3	Unerwarteter Zustand
8611	E 10 3	Überschreitung Grenzwert Schleppfehler
5280	E 21 1	Fehler 1 Strommessung U
5281	E 21 1	Fehler 1 Strommessung V
5282	E 21 2	Fehler 2 Strommessung U
5283	E 21 3	Fehler 2 Strommessung V
6080	E 25 0	Ungültiger Gerätetyp
6081	E 25 1	Nicht unterstützter Gerätetyp
6082	E 25 2	Nicht unterstützte HW- Revision
6083	E 25 3	Gerätefunktion beschränkt
0003	L 2J J	agi atgianitation describanit

error_code (hex)	Anzeige	Bedeutung
5580	E 26 0	Fehlender User-Parametersatz
5581	E 26 1	Checksummenfehler
5582	E 26 2	Flash: Fehler beim Schreiben
5583	E 26 3	Flash: Fehler beim Löschen
5584	E 26 4	Flash: Fehler im internen Flash
5585	E 26 5	Fehlende Kalibrierdaten
5586	E 26 6	Fehlende User- Positionsdatensätze
8611	E 27 0	Warnschwelle Schleppfehler
FF01	E 28 0	Betriebsstundenzähler fehlt
FF02	E 28 1	Betriebsstundenzähler: Schreibfehler
FF03	E 28 2	Betriebsstundenzähler korrigiert
FF04	E 28 3	Betriebsstundenzähler konvertiert
6380	E 30 0	Interner Umrechnungsfehler
2312	E 31 0	I ² T – Motor
2311	E 31 1	I ² T – Servoregler
2313	E 31 2	1 ² T – PFC
2314	E 31 3	I ² T – Bremswiderstand
3280	E 32 0	Ladezeit Zwischenkreis überschritten
3281	E 32 1	Unterspannung für aktive PFC
3282	E 32 5	Überlast Bremschopper
3283	E 32 6	Entladezeit Zwischenkreis überschritten
3284	E 32 7	Leistungsversorgung fehlt für Reglerfreigabe
3285	E 32 8	Ausfall Leistungsversorgung bei Reglerfreigabe
3286	E 32 9	Phasenausfall
8A87	E 33 0	Schleppfehler Encoder-Emulation
8780	E 34 0	Synchronisationsfehler (Aufsynchronisierung)
8781	E 34 1	Synchronisationsfehler (Synchronisierung ausgefallen)
8480	E 35 0	Durchdrehschutz Linearmotor
6320	E 36 x	Parameter wurde limitiert
8612	E 40 x	SW-Endschalter erreicht
8680	E 42 0	Positionierung: Antrieb stoppt aufgrund fehlender Anschlusspositionierung
8681	E 42 1	Positionierung: Antrieb stoppt weil Drehrichtungsumkehr nicht erlaubt
8682	E 42 2	Positionierung: Unerlaubte Drehrichtungsumkehr nach HALT
8081	E 43 0	Endschalter: Negativer Sollwert gesperrt
8082	E 43 1	Endschalter: Positiver Sollwert gesperrt
8083	E 43 2	Endschalter: Positionierung unterdrückt
8084	E 45 0	Treiberversorgung nicht abschaltbar
8085	E 45 1	Treiberversorgung nicht aktivierbar
8086	E 45 2	Treiberversorgung wurde aktiviert
7580	E 60 0	Ethernet I
7581	E 61 0	Ethernet II
F080	E 80 0	Überlauf Stromregler- IRQ
F081	E 80 1	Überlauf Drehzahlregler- IRQ
F082	E 80 2	Überlauf Lageregler- IRQ
F083	E 80 3	Überlauf Interpolator- IRQ
F084	E 81 4	Überlauf Low Level- IRQ
F085	E 81 5	Überlauf MDC- IRQ
5080	E 90 x	Hardwarefehler
6000	E 91 0	Interner Initialisierungsfehler

5.5.3 Beschreibung der Objekte

5.5.3.1 Objekt 1003_h: pre_defined_error_field

Der jeweilige error_code der Fehlermeldungen wird zusätzlich in einem vierstufigen Fehlerspeicher abgelegt. Dieser ist wie ein Schieberegister strukturiert, so dass immer der zuletzt aufgetretene Fehler im Objekt 1003h_01h (standard_error_field_0) abgelegt ist. Durch einen Lesezugriff auf das Objekt 1003h_00h (pre_defined_error_field) kann festgestellt werden, wie viele Fehlermeldungen zur Zeit im Fehlerspeicher abgelegt sind. Der Fehlerspeicher wird durch das Einschreiben des Wertes 00h in das Objekt 1003h_00h (pre_defined_error_field) gelöscht. Um nach einem Fehler die Endstufe des Reglers wieder aktivieren zu können, muss zusätzlich eine Fehlerquittierung (siehe Kapitel 7.1: Zustandsänderung 15) durchgeführt werden.

Index	1003 _h
Name	pre_defined_error_field
Object Code	ARRAY
No. of Elements	4
Data Type	UINT32

ARRAY_MAIN

Sub-Index	01 _h
Description	standard_error_field_0
Access	ro
PDO Mapping	no
Units	-
Value Range	-
Default Value	-

ARRAY_Eintrag

Sub-Index	02 _h
Description	standard_error_field_1
Access	ro
PDO Mapping	no
Units	-
Value Range	-
Default Value	-

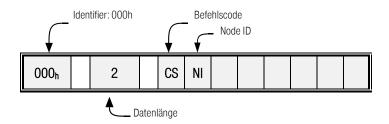
ARRAY_Eintrag

Sub-Index	03 _h
Description	standard_error_field_2
Access	ro
PDO Mapping	no
Units	-
Value Range	-
Default Value	_

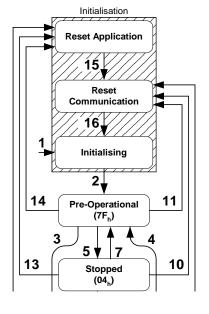
ARRAY_Eintrag

Sub-Index	04 _h
Description	standard_error_field_3
Access	ro
PDO Mapping	no
Units	-
Value Range	-
Default Value	-

ARRAY_Eintrag



5.6 Netzwerkmanagement (NMT-Service)


Alle CANopen-Geräte können über das Netzwerkmanagement angesteuert werden. Hierfür ist der Identifier mit der höchsten Priorität (000_h) reserviert.

Mittels NMT können Befehle an einen oder alle Regler gesendet werden. Jeder Befehl besteht aus zwei Bytes, wobei das erste Byte den Befehlscode (command specifier, **CS**) und das zweite Byte die Knotenadresse (node id, **NI**) des angesprochenen Reglers beinhaltet. Über die Knotenadresse Null können gleichzeitig alle im Netzwerk befindlichen Knoten angesprochen werden. Es ist somit möglich, dass z.B. in allen Geräten gleichzeitig ein Reset ausgelöst wird. Die Regler quittieren die NMT-Befehle nicht. Es kann nur indirekt (z.B. durch die Einschaltmeldung nach einem Reset) auf die erfolgreiche Durchführung geschlossen werden.

Aufbau der NMT-Nachricht:

Für den NMT-Status des CANopen-Knotens sind Zustände in einem Zustandsdiagramm festgelegt. Über das Byte **CS** in der NMT-Nachricht können Zustandsänderungen ausgelöst werden. Diese sind im Wesentlichen am Ziel-Zustand orientiert.

	Bedeutung	CS	Ziel-Zustand	
2	Bootup	-	Pre-Operational	$7F_{h}$
3	Start Remote Node	01 _h	Operational	05_{h}
4	Enter Pre-Operational	80_{h}	Pre-Operational	$7F_h$
5	Stop Remote Node	02_{h}	Stopped	04_{h}
6	Start Remote Node	01 _h	Operational	05_{h}
7	Enter Pre-Operational	80_{h}	Pre-Operational	$7F_h$
8	Stop Remote Node	02_h	Stopped	04_{h}
9	Reset Communication	82 _h	Reset Communication *1)	
10	Reset Communication	82 _h	Reset Communication *1)	

11	Reset Communication	82 _h	Reset Communication *1)
12	Reset Application	81 _h	Reset Application *1)
13	Reset Application	81 _h	Reset Application *1)
14	Reset Application	81 _h	Reset Application *1)

 $^{^{\}star 1)}$ Endgültiger Zielzustand ist Pre-Operational (7Fh), da die Übergänge 15, 16 und 2 vom Regler automatisch durchgeführt werden.

Abbildung 5.4: NMT-State machine

Alle anderen Zustands-Übergänge werden vom Regler selbsttätig ausgeführt, z.B. weil die Initialisierung abgeschlossen ist.

Im Parameter NI muss die Knotennummer des Reglers angegeben werden oder Null, wenn alle im Netzwerk befindlichen Knoten adressiert werden sollen (Broadcast). Je nach NMT-Status können bestimmte Kommunikationsobjekte nicht benutzt werden: So ist es z.B. unbedingt notwendig den NMT-Status auf Operational zu stellen, damit der Regler PDOs sendet.

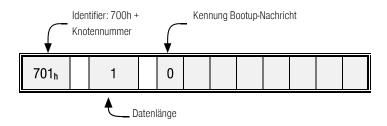
Name	Bedeutung	SD0	PDO	NMT
Reset Application	Keine Kommunikation. Alle CAN-Objekte werden auf ihre Resetwerte (Applikations-Parametersatz) zurückgesetzt	-	-	-
Reset Communication	Keine Kommunikation Der CAN-Controller wird neu initialisiert.	-	-	-
Initialising	Zustand nach Hardware-Reset. Zurücksetzen des CAN-Knotens, Senden der Bootup-Message	-	-	-
Pre-Operational	Kommunikation über SDOs möglich PDOs nicht aktiv (Kein Senden / Auswerten)	X	-	Х
Operational	Kommunikation über SDOs möglich Alle PDOs aktiv (Senden / Auswerten)	Χ	Х	X
Stopped	Keine Kommunikation außer Heartbeating	-	-	Χ

NMT-Telegramme dürfen nicht in einem Burst (unmittelbar hintereinander) gesendet werden! Zwischen zwei aufeinanderfolgenden NMT-Nachrichten auf dem Bus (auch für verschiedene Knoten!) muss mindestens die doppelte Lagereglerzykluszeit liegen, damit der Regler die NMT-Nachrichten korrekt verarbeitet.

Der NMT Befehl "Reset Application" wird gegebenenfalls so lange verzögert, bis ein laufender Speichervorgang abgeschlossen ist, da ansonsten der Speichervorgang unvollständig bleiben würde (Defekter Parametersatz).

Die Verzögerung kann im Bereich einiger Sekunden liegen.

Der Kommunikationsstatus muss auf **operational** eingestellt werden, damit der Regler PDOs sendet und empfängt.


5.7 Bootup

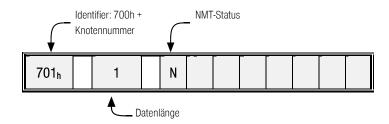
5.7.1 Übersicht

Nach dem Einschalten der Spannungsversorgung oder nach einem Reset, meldet der Regler über eine Bootup-Nachricht, dass die Initialisierungsphase beendet ist. Der Regler ist dann im NMT-Status preoperational (siehe Kapitel 5.6, Netzwerkmanagement: NMT-Service)

5.7.2 Aufbau der Bootup- Nachricht

Die Bootup-Nachricht ist nahezu identisch zur folgenden Heartbeat-Nachricht aufgebaut. Lediglich wird statt des NMT-Status eine Null gesendet.

5.8 Heartbeat (Error Control Protocol)


5.8.1 Übersicht

Zur Überwachung der Kommunikation zwischen Slave (Antrieb) und Master kann das sogenannte Heartbeat-Protokoll aktiviert werden: Hierbei sendet der Antrieb zyklisch Nachrichten an den Master. Der Master kann das zyklische Auftreten dieser Nachrichten überprüfen und entsprechende Maßnahmen einleiten, wenn diese ausbleiben. Da sowohl Heartbeat- als auch Nodeguarding- Telegramme (siehe Kap. 5.9) mit dem Identifier 700_h + Knotennummer gesendet werden, können nicht beide Protokolle gleichzeitig aktiv sein. Werden beide Protokolle gleichzeitig aktiviert, ist nur das Heartbeat- Protokoll aktiv.

5.8.2 Aufbau der Heartbeat- Nachricht

Das Heartbeat-Telegramm wird mit dem Identifier **700**_h + Knotennummer gesendet. Es enthält nur 1 Byte Nutzdaten, den NMT-Status des Reglers (siehe Kapitel 5.6, Netzwerkmanagement: NMT-Service).

N	Bedeutung
04 _h	Stopped
05 _h	Operational
7F _h	Pre-Operational

5.8.3 Beschreibung der Objekte

5.8.3.1 Objekt 1017_h: producer_heartbeat_time

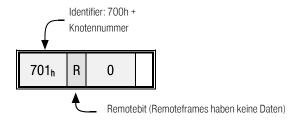
Zur Aktivierung der Heartbeat- Funktionalität kann die Zeit zwischen zwei Heartbeat-Telegrammen über das Object **producer_heartbeat_time** festgelegt werden.

Index	1017 _h	VAR_Eintrag
Name	producer_heartbeat_time	
Object Code	VAR	
Data Type	UINT16	
-		-
Access	rw	VAR_Eintrag
PDO Mapping	no	
Units	ms	
Value Range	065535	
Default Value	0	

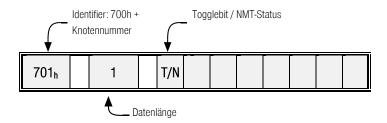
Die **producer_heartbeat_time** kann im Parametersatz gespeichert werden. Startet der Regler mit einer **producer_heartbeat_time** ungleich Null, gilt die Bootup-Nachricht als erstes Heartbeat.

Der Regler kann nur als sog. Heartbeat Producer verwendet werden. Das Objekt 1016_h (consumer_heartbeat_time) ist daher nur aus Kompatibilitätsgründen implementiert und liefert immer 0 zurück.

5.9 Nodeguarding (Error Control Protocol)


5.9.1 Übersicht

Ebenfalls zur Überwachung der Kommunikation zwischen Slave (Antrieb) und Master kann das sogenannte Nodeguarding-Protokoll verwendet werden. Im Gegensatz zum Heartbeat- Protokoll überwachen sich hierbei Master und Slave gegenseitig:


Der Master fragt den Antrieb zyklisch nach seinem NMT- Status. Dabei wird in jeder Antwort des Reglers ein bestimmtes Bit invertiert (getoggelt). Bleiben diese Antworten aus oder antwortet der Regler immer mit dem gleichen Togglebit kann der Master entsprechend reagieren. Ebenso überwacht der Antrieb das regelmäßige Eintreffen der Nodeguarding- Anfragen des Masters: Bleiben die Nachrichten über einen bestimmten Zeitraum aus, löst der Regler Fehler 12-4 aus. Da sowohl Heartbeat- als auch Nodeguarding-Telegramme (siehe Kap. 5.8) mit dem Identifier 700_h + Knotennummer gesendet werden, können nicht beide Protokolle gleichzeitig aktiv sein. Werden beide Protokolle gleichzeitig aktiviert, ist nur das Heartbeat- Protokoll aktiv. Nodeguarding ist ab Firmware 3.5.x.1.1 verfügbar.

5.9.2 Aufbau der Nodeguarding-Nachrichten

Die Anfrage des Masters muss als sog. Remoteframe mit dem Identifier 700_h + Knotennummer gesendet werden. Bei einem Remoteframe ist zusätzlich ein spezielles Bit im Telegramm gesetzt, das Remotebit. Remoteframes haben grundsätzlich keine Daten.

Die Antwort des Reglers ist analog zur Heartbeat- Nachricht aufgebaut. Sie enthält nur 1 Byte Nutzdaten, das Togglebit und den NMT-Status des Reglers (siehe Kapitel 5.6).

Das erste Datenbyte (T/N) ist folgendermaßen aufgebaut:

Bit	Wert	Name	Bedeutung
7	80 _h	toggle_bit	Ändert sich mit jedem Telegramm
06	7F _h	nmt_state	 04_h Stopped 05_h Operational 7F_h Pre-Operational

Die Überwachungszeit für Anfragen des Masters ist parametrierbar. Die Überwachung beginnt mit der <u>ersten empfangenen</u> Remoteabfrage des Masters. Ab diesem Zeitpunkt müssen die Remoteabfragen vor Ablauf der eingestellten Überwachungszeit eintreffen, da anderenfalls Fehler 12-4 ausgelöst wird.

Das Togglebit wird durch das NMT- Kommando Reset Communication zurückgesetzt. Es ist daher in der ersten Antwort des Reglers gelöscht.

5.9.3 Beschreibung der Objekte

5.9.3.1 Objekt 100Ch: guard_time

Zur Aktivierung der Nodeguarding- Überwachung wird die Maximalzeit zwischen zwei Remoteabfragen des Masters parametriert. Diese Zeit wird im Regler aus dem Produkt von guard_time (100C_h) und life_time_factor (100D_h) bestimmt. Es empfiehlt sich daher den life_time_factor mit 1 zu beschreiben und die Zeit dann direkt über die guard_time in Millisekunden vorzugeben.

Index	100C _h
Name	guard_time
Object Code	VAR
Data Type	UINT16

VAR_Eintrag Ab Firmware 3.5.x.1

Access	rw
PDO Mapping	no
Units	ms
Value Range	065535
Default Value	0

VAR_Eintrag

5.9.3.2 Objekt 100D_h: life_time_factor

Der life_time_factor sollte mit 1 beschrieben werden um die guard_time direkt vorzugeben.

Index	100D _h
Name	life_time_factor
Object Code	VAR
Data Type	UINT8

VAR_Eintrag Ab Firmware 3.5.x.1

Access	rw
PDO Mapping	no
Units	-
Value Range	0, 1
Default Value	0

VAR_Eintrag

Tabelle der Identifier

Die folgende Tabelle gibt eine Übersicht über die verwendeten Identifier:

Objekt-Typ	Identifier (hexadezimal)	Bemerkung
SDO (Host an Regler)	600 _h +Knotennummer	
SDO (Regler an Host)	580 _h +Knotennummer	
TPD01	181 _h	Standardwerte.
TPD02	281 _h	Können bei Bedarf geändert
TPD03	381 _h	werden.
TPD04	481 _h	
RPD01	201 _h	
RPD02	301 _h	
RPD03	401 _h	
RPD04	501 _h	
SYNC	080 _h	
EMCY	080 _h +Knotennummer	
HEARTBEAT	700 _h +Knotennummer	
NODEGUARDING	700 _h +Knotennummer	
BOOTUP	700 _h +Knotennummer	
NMT	000_{h}	

6 Parameter einstellen

Bevor der Servoregler die gewünschte Aufgabe (Momenten-, Drehzahlregelung, Positionierung) ausführen kann, müssen zahlreiche Parameter des Reglers an den verwendeten Motor und die spezifische Applikation angepasst werden. Dabei sollte in der Reihenfolge der anschließenden Kapitel vorgegangen werden. Im Anschluss an die Einstellung der Parameter wird die Gerätesteuerung und die Nutzung der jeweiligen Betriebsarten erläutert.

Das Display des Reglers zeigt ein "A" (Attention) an, wenn der Regler noch nicht geeignet parametriert wurde. Soll der Regler komplett über CANopen parametriert werden, müssen Sie das Objekt 6510_h_CO_h beschreiben, um diese Anzeige zu unterdrücken. (Siehe Kapitel 6.17.1.12 Objekt 6510h_COh: commissioning_state).

Neben den hier ausführlich beschriebenen Parametern sind im Objektverzeichnis des Reglers weitere Parameter vorhanden, die gemäß CANopen implementiert werden müssen. Sie enthalten aber in der Regel keine Informationen, die beim Aufbau einer Applikation mit der item C Serie sinnvoll verwendet werden kann. Bei Bedarf ist die Spezifikation solcher Objekte in [1] und [2] (siehe Seite 13) nachzulesen.

6.1 Parametersätze laden und speichern

6.1.1 Übersicht

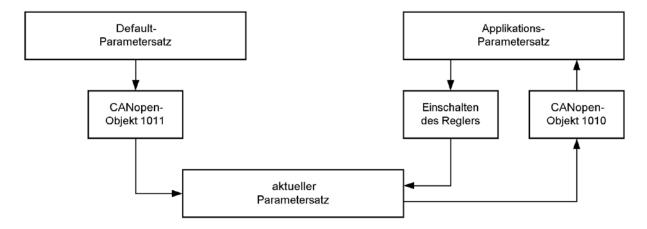
Der Regler verfügt über drei Parametersätze:

Aktueller Parametersatz

Dieser Parametersatz befindet sich im flüchtigen Speicher (RAM) des Reglers. Er kann mit dem Parametrierprogramm item Motion Soft oder über den CAN-Bus beliebig gelesen und beschrieben werden. Beim Einschalten des Reglers wird der **Applikations-Parametersatz** in den **aktuellen Parametersatz** kopiert.

Default-Parametersatz

Dieses ist der vom Hersteller standardmäßig vorgegebene unveränderliche Parametersatz des Antriebsreglers. Durch einen Schreibvorgang in das CANopen-Objekt 1011_h_01_h


(restore_all_default_parameters) kann der Default-Parametersatz in den aktuellen Parametersatz kopiert werden. Dieser Kopiervorgang ist nur bei ausgeschalteter Endstufe möglich.

Applikations-Parametersatz

Der aktuelle Parametersatz kann in den nichtflüchtigen Flash-Speicher gesichert werden. Der Speichervorgang wird mit einem Schreibzugriff auf das CANopen-Objekt 1010_h_01_h (save_all_parameters) ausgelöst. Beim Einschalten des Reglers wird automatisch der Applikations-Parametersatz in den aktuellen Parametersatz kopiert.

Die nachfolgende Grafik veranschaulicht die Zusammenhänge zwischen den einzelnen Parametersätzen.

Es sind zwei unterschiedliche Konzepte zur Parametersatzverwaltung denkbar:

- 1. Der Parametersatz wird mit dem Parametrierprogramm item Motion Soft™ erstellt und ebenfalls mit dem item Motion Soft™ komplett in die einzelnen Regler übertragen. Bei diesem Verfahren müssen nur die ausschließlich via CANopen zugänglichen Objekte über den CAN-Bus eingestellt werden. Nachteilig ist hierbei, dass für jede Inbetriebnahme einer neuen Maschine oder im Falle einer Reparatur (Regleraustausch) die Parametriersoftware benötigt wird. Dieses Verfahren ist daher nur bei Einzelstücken sinnvoll.
- 2. Diese Variante basiert auf der Tatsache, dass die meisten applikationsspezifischen Parametersätze nur in wenigen Parametern vom Default-Parametersatz abweichen. Dadurch ist es möglich, dass der aktuelle Parametersatz nach jedem Einschalten der Anlage über den CAN-Bus neu aufgebaut wird. Hierzu wird von der übergeordneten Steuerung zunächst der Default-Parametersatz geladen (Aufruf des CANopen-Objekts 1011_h_01_h (restore_all_default_parameters). Danach werden nur die abweichenden Objekte übertragen. Der gesamte Vorgang dauert pro Regler unter 1 Sekunde. Vorteilhaft ist, dass dieses Verfahren auch bei unparametrierten Reglern funktioniert, so dass die Inbetriebnahme von neuen Anlagen oder der Austausch einzelner Regler unproblematisch ist und die Parametriersoftware item Motion Soft™ hierfür nicht benötigt wird. Die Verwendung dieser Methode wird empfohlen.

Stellen Sie vor dem allerersten Einschalten der Endstufe sicher, dass der Regler wirklich die von Ihnen gewünschten Parameter enthält.

Ein falsch parametrierter Regler kann unkontrolliert drehen und Personen- oder Sachschäden verursachen.

6.1.2 Beschreibung der Objekte

6.1.2.1 Objekt 1011_h: restore_default_parameters

Index	1011 _h	ARF
Name	restore_parameters	
Object Code	ARRAY	
No. of Elements	1	
Data Type	UINT32	

ARRAY_MAIN

Sub-Index	01 _h
Description	restore_all_default_parameters
Access	rw
PDO Mapping	no
Units	-
Value Range	64616F6C _h ("load")
Default Value	1 (read access)

ARRAY_Eintrag

Das Objekt 1011_h_01_h (restore_all_default_parameters) ermöglicht, den aktuellen Parametersatz in einen definierten Zustand zu versetzen. Hierfür wird der Default-Parametersatz in den aktuellen Parametersatz kopiert. Der Kopiervorgang wird durch einen Schreibzugriff auf dieses Objekt ausgelöst, wobei als Datensatz der String "load" in hexadezimaler Form zu übergeben ist.

Dieser Befehl wird nur bei deaktivierter Endstufe ausgeführt. Andernfalls wird der SDO-Fehler "Daten können nicht übertragen oder gespeichert werden, da sich der Regler dafür nicht im richtigen Zustand befindet" erzeugt. Wird die falsche Kennung gesendet, wird der Fehler "Daten können nicht übertragen oder gespeichert werden" erzeugt. Wird lesend auf das Objekt zugegriffen, wird eine 1 zurückgegeben, um anzuzeigen, dass das Zurücksetzen auf Defaultwerte unterstützt wird.

Die Parameter der CAN-Kommunikation (Knoten-Nr., Baudrate und Betriebsart) sowie zahlreiche Winkelgeber- Einstellungen (die zum Teil einen Reset erfordern um wirksam zu werden) bleiben hierbei unverändert.

6.1.2.2 Objekt 1010_h: store_parameters

Index	1010 _h	ARRAY_MAIN
Name	store_parameters	
Object Code	ARRAY	
No. of Elements	1	
Data Type	UINT32	

Sub-Index	01 _h
Description	save_all_parameters
Access	rw
PDO Mapping	no
Units	-
Value Range	65766173 _h ("save")
Default Value	1

ARRAY_Eintrag

Soll der Default-Parametersatz auch in den Applikations-Parametersatz übernommen werden, dann muss außerdem auch das Objekt 1010_h_01_h (save_all_parameters) aufgerufen werden.

Wird das Objekt über ein SDO geschrieben, ist das Defaultverhalten, dass das SDO sofort beantwortet wird. Die Antwort spiegelt somit nicht das Ende des Speichervorgangs wider.

Das Verhalten kann jedoch über das Objekt 6510_h_FO_h (compatibility_control) geändert werden.

6.2 Kompatibilitäts- Einstellungen

6.2.1 Übersicht

Um einerseits kompatibel zu früheren CANopen-Implementationen (z.B. auch in anderen Gerätefamilien) bleiben zu können und andererseits Änderungen und Korrekturen gegenüber der DSP402 und der DS301 ausführen zu können, wurde das Objekt **compatibility_control** eingefügt. Im Defaultparametersatz liefert dieses Objekt 0, d.h. Kompatibilität zu früheren Versionen. Für neue Applikationen empfehlen wir, die definierten Bits zu setzen, um so eine möglichst hohe Übereinstimmung mit den genannten Standards zu ermöglichen.

6.2.2 Beschreibung der Objekte

6.2.2.1 In diesem Kapitel behandelte Objekte

Index	Objekt	Name	Тур	Attr.
6510 _h _F0 _h	VAR	compatibility_control	UINT16	rw

6.2.2.2 Objekt 6510_h_F0_h: compatibility_control

Sub-Index	FO _h
Description	compatibility_control
Data Type	UINT16
Access	rw
PDO Mapping	no
Units	-
Value Range	01FF _h , siehe Tabelle
Default Value	0

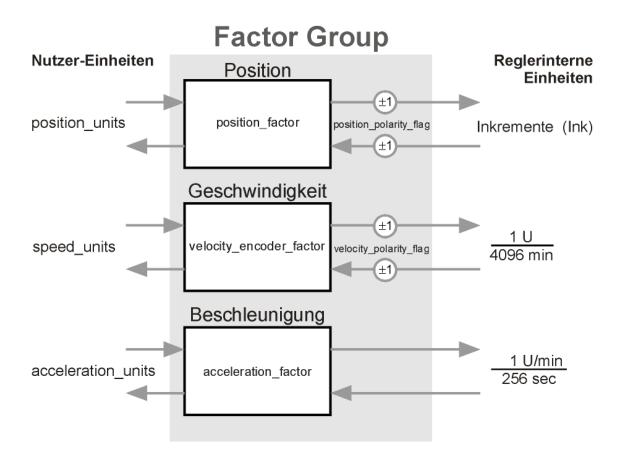
RECORD_Eintrag Ab Firmware 3.2.0.1.

1

Bit	Wert	Name	
0	0001 _h	homing_method_scheme*	
1	0002_{h}	reserved	
2	0004 _h	homing_method_scheme	
3	0008 _h	reserved	
4	0010_{h}	response_after_save	Ab Firmware 3.4.0.1.1
5	0020 _h	reserved	Ab Firmware 3.5.0.1.1
6	0040_h	homing_to_zero	Ab Firmware 3.5.0.1.1
7	0080 _h	device_control	Ab Firmware 3.5.0.1.1
8	0100 _h	reserved	Ab Firmware 3.5.0.1.1

Bit 0	homing_method_scheme*	
		Das Bit hat die gleiche Bedeutung wie Bit 2 und ist aus Kompatibilitätsgründen vorhanden. Wird Bit 2 gesetzt, wird dieses Bit auch gesetzt und umgekehrt.
Bit 1	reserved	
		Das Bit ist reserviert. Es darf nicht gesetzt werden.
Bit 2	homing_method_scheme	
		Wenn dieses Bit gesetzt ist, sind die Referenzfahrtmethoden 32 35 gemäß DSP402 nummeriert (Siehe auch Kap. 8.2.3). Wird dieses Bit gesetzt, wird auch Bit 0 gesetzt und umgekehrt
Bit 3	reserved	
		Das Bit ist reserviert. Es darf nicht gesetzt werden.
Bit 4	response_after_save	

		Wenn dieses Bit gesetzt ist, wird die Antwort auf save_all_parameters erst gesendet, wenn das Speichern abgeschlossen wurde. Dies kann mehrere Sekunden dauern, was ggf. zu einem Timeout in der Steuerung führt. Ist das Bit gelöscht, wird sofort geantwortet, es ist allerdings zu berücksichtigen, dass der Speichervorgang noch nicht
		abgeschlossen ist.
Bit 5	reserved	
		Das Bit ist reserviert. Es darf nicht gesetzt werden.
Bit 6	homing_to_zero	
		Bisher besteht eine Referenzfahrt unter CANopen nur aus 2 Phasen (Suchfahrt und Kriechfahrt). Der Antrieb fährt anschließend nicht auf die ermittelte Nullposition (die z.B. durch den homing_offset zur gefundenen Referenzposition verschoben sein kann).
		Wird dieses Bit gesetzt, wird dieses Standardverhalten geändert und der Antrieb schließt der Referenzfahrt eine Fahrt auf Null an. Siehe hierzu Kap. 8.2
Bit 7	device_control	
		Wenn dieses Bit gesetzt ist, wird Bit 4 des statusword (voltage_enabled) gemäß DSP 402 v2.0 ausgegeben. Außerdem ist der Zustand FAULT_REACTION_ ACTIVE vom Zustand FAULT unterscheidbar. Siehe hierzu Kap. 7
Bit 8	reserved	
		D D''


Das Bit ist reserviert. Es darf nicht gesetzt werden.

6.3 Umrechnungsfaktoren (Factor Group)

6.3.1 Übersicht

Servoregler werden in einer Vielzahl von Anwendungsfällen eingesetzt: Als Direktantrieb, mit nachgeschaltetem Getriebe, für Linearantriebe etc. Um für alle diese Anwendungsfälle eine einfache Parametrierung zu ermöglichen, kann der Regler mit Hilfe der Factor Group so parametriert werden, dass der Nutzer alle Größen wie z.B. die Drehzahl direkt in den gewünschten Einheiten am Abtrieb angeben bzw. auslesen kann (z.B. bei einer Linearachse Positionswerte in Millimeter und Geschwindigkeiten in Millimeter pro Sekunde). Der Regler rechnet die Eingaben dann mit Hilfe der Factor Group in seine internen Einheiten um. Für jede physikalische Größe (Position, Geschwindigkeit und Beschleunigung) ist ein Umrechnungsfaktor vorhanden, um die Nutzer-Einheiten an die eigene Applikation anzupassen. Die durch die Factor Group eingestellten Einheiten werden allgemein als position_units, speed_units oder acceleration_units bezeichnet. Die folgende Skizze verdeutlicht die Funktion der Factor Group:

Alle Parameter werden im Regler grundsätzlich in seinen internen Einheiten gespeichert und erst beim Einschreiben oder Auslesen mit Hilfe der Factor Group umgerechnet.

Daher sollte die Factor Group vor der allerersten Parametrierung eingestellt werden und während einer Parametrierung nicht geändert werden.

Standardmäßig ist die Factor Group auf folgende Einheiten eingestellt:

Größe	Bezeichnung	Einheit	Erklärung
Länge	position_units	Inkremente	65536 Inkremente pro Umdrehung
Geschwindigkeit	speed_units	min ⁻¹	Umdrehungen pro Minute
Beschleunigung	acceleration_units	(min ⁻¹)/s	Drehzahlerhöhung pro Sekunde

6.3.2 Beschreibung der Objekte

6.3.2.1 In diesem Kapitel behandelte Objekte

Index	Objekt	Name	Тур	Attr.
6093 _h	ARRAY	position_factor	UINT32	rw
6094 _h	ARRAY	velocity_encoder_ factor	UINT32	rw
6097 _h	ARRAY	acceleration_factor	UINT32	rw
607E _h	VAR	polarity	UINT8	rw

6.3.2.2 Objekt 6093_h: position_factor

Das Objekt **position_factor** dient zur Umrechnung aller Längeneinheiten der Applikation von **position_units** in die interne Einheit **Inkremente** (65536 Inkremente entsprechen 1 Umdrehung). Es besteht aus Zähler und Nenner.

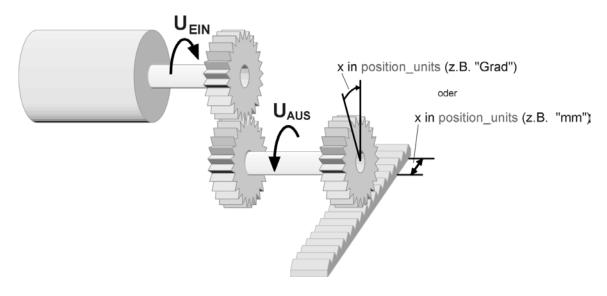


Abbildung 6.5: Übersicht: Factor Group

Index	6093 _h	ARRAY_MAIN
Name	position_factor	
Object Code	ARRAY	
No. of Elements	2	
Data Type	UINT32	

Sub-Index	01 _h	ARRAY_Eintrag
Description	numerator	
Access	rw	
PDO Mapping	yes	
Units	-	
Value Range	-	
Default Value	1	

Sub-Index	02 _h	ARRAY_Eintrag
Description	divisor	0
Access	rw	
PDO Mapping	yes	
Units	-	
Value Range	-	
Default Value	1	

In die Berechnungsformel des **position_factor** gehen folgende Größen ein:

gear_ratio Getriebeverhältnis zwischen Umdrehungen am Eintrieb (U_{EIN}) und

Umdrehungen am Abtrieb (U_{AUS})

feed_constant Verhältnis zwischen Umdrehungen am Abtrieb (UAUS) und

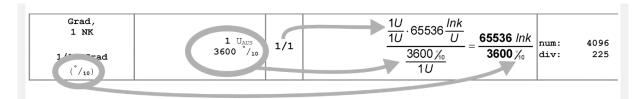
Bewegung in **position_units** (z.B. 1 U = 360° Grad)

Die Berechnung des **position_factors** erfolgt mit folgender Formel:

$$position_factor = \frac{numerator}{divisor} = \frac{gear_ratio \cdot 65536}{feed_constant}$$

Der **position_factor** muss getrennt nach Zähler und Nenner in den Regler geschrieben werden. Daher kann es notwendig sein, den Bruch durch geeignete Erweiterung auf ganze Zahlen zu bringen.

Der **position_factor** darf nicht größer als 2²⁴ sein.



BEISPIEL

Zunächst muss die gewünschte Einheit (Spalte 1) und die gewünschten Nachkommastellen (NK) festgelegt, sowie der Getriebefaktor und ggf. die Vorschubkonstante der Applikation ermittelt werden. Diese Vorschubkonstante wird dann in den gewünschten Positions-Einheiten dargestellt (Spalte 2).

Letzlich können alle Werte in die Formel eingesetzt und der Bruch berechnet werden:

- 1. Gewünschte Einheit am Abtrieb (position_units)
- 2. feed_constant: Wie viel position_units sind 1 Umdrehung (UAUS)
- 3. Getriebefaktor (gear_ratio): UEIN pro UAUS
- 4. Werte in Formel einsetzen

1.	2.	3.	4.	ERGEBNIS Gekürzt
Inkremente, 0 NK Ink.	1 U _{AUS} = 65536 lnk	1/1	$\frac{\frac{1U}{1U} \cdot 65536 \frac{lnk}{U}}{\frac{65536 \ lnk}{1 \ U}} = \frac{1 \ lnk}{1 \ lnk}$	num: 1 div: 1
Grad, 1 NK 1/10 Grad ([°] / ₁₀)	1 U _{AUS} = 3600 °/ ₁₀	1/1	$\frac{\frac{1U}{1U} \cdot 65536 \frac{lnk}{U}}{\frac{3600 \%_0}{1 U}} = \frac{65536 lnk}{3600 \%_0}$	num: 4096 div: 225
Umdr., 2 NK	1 U _{AUS} =	1/1	$\frac{\frac{1U}{1U} \cdot 65536 \frac{lnk}{U}}{\frac{100 \frac{0}{100}}{1U}} = \frac{65536 lnk}{100 \frac{0}{100}}$	num: 16384 div: 25
1/100 Umdr. (^U / ₁₀₀)	100 ^U / ₁₀₀	2/3	$\frac{\frac{2U}{3U} \cdot 65536 \frac{lnk}{U}}{\frac{100 \frac{0}{100}}{1U}} = \frac{131072 lnk}{300 \frac{0}{100}}$	num: 32768 div: 75
mm, 1 NK 1/10 mm (^{mm} / ₁₀)	63.15 ^{mm} / _U ⇒ 1 ∪ _{AUS} = 631.5 ^{mm} / ₁₀	4/5	$\frac{\frac{4U}{5U} \cdot 65536 \frac{lnk}{U}}{\frac{631.5 \frac{mm}{10}}{1U}} = \frac{2621440 lnk}{31575 \frac{mm}{10}}$	num: 524288 div: 6315

6.3.2.3 Objekt 6094_h: velocity_encoder_factor

Das Objekt **velocity_encoder_factor** dient zur Umrechnung aller Geschwindigkeitswerte der Applikation von **speed_units** in die interne Einheit **Umdrehungen pro 4096 Minuten**. Es besteht aus Zähler und Nenner.

Index	6094 _h
Name	velocity_encoder_factor
Object Code	ARRAY
No. of Elements	2
Data Type	UINT32

ARRAY_MAIN

Sub-Index	01 _h
Description	numerator
Access	rw
PDO Mapping	yes
Units	-
Value Range	-
Default Value	1000 _h

ARRAY_Eintrag

Sub-Index	02 _h
Description	divisor
Access	rw
PDO Mapping	yes
Units	-
Value Range	-
Default Value	1

ARRAY_Eintrag

Die Berechnung des velocity_encoder_factor setzt sich im Prinzip aus zwei Teilen zusammen: Einem Umrechnungsfaktor von internen Längeneinheiten in position_units und einem Umrechnungsfaktor von internen Zeiteinheiten in benutzerdefinierte Zeiteinheiten (z.B. von Sekunden in Minuten). Der erste Teil entspricht der Berechnung des position_factor für den zweiten Teil kommt ein zusätzlicher Faktor zur Berechnung hinzu:

time_factor_v

Verhältnis zwischen interner Zeiteinheit und benutzerdefinierter Zeiteinheit.

$$(z.B. 1 min = \frac{1}{4096} 4096 min)$$

gear_ratio Getriebeverhältnis zwischen Umdrehungen am Eintrieb (U_{EIN}) und

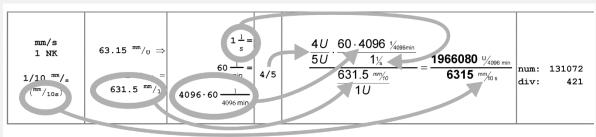
Umdrehungen am Abtrieb (UAUS)

feed_constant Verhältnis zwischen Umdrehungen am Abtrieb (UAUS) und

Bewegung in **position_units** (z.B. 1 U = 360° Grad)

Die Berechnung des velocity_encoder_factors erfolgt mit folgender Formel:

$$velocity_encoder_factor = \frac{numerator}{divisor} = \frac{gear_ratio \cdot time_factor_v}{feed_constant}$$

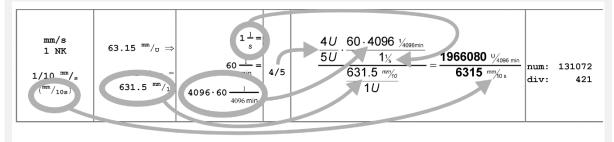

Wie der **position_factor** wird auch der **velocity_encoder_factor** getrennt nach Zähler und Nenner in den Regler geschrieben werden. Daher kann es notwendig sein, den Bruch durch geeignete Erweiterung auf ganze Zahlen zu bringen.

BEISPIEL

Zunächst muss die gewünschte Einheit (Spalte 1) und die gewünschten Nachkommastellen (NK) festgelegt, sowie der Getriebefaktor und ggf. die Vorschubkonstante der Applikation ermittelt werden. Diese Vorschubkonstante wird dann in den gewünschten Positions-Einheiten dargestellt (Spalte 2). Anschließend wird die gewünschte Zeiteinheit in die Zeiteinheit des Servopositionierreglers umgerechnet (Spalte 3).

Letzlich können alle Werte in die Formel eingesetzt und der Bruch berechnet werden:

- 1. Gewünschte Einheit am Abtrieb (speed_units)
- 2. feed_constant. Wie viel position_units sind 1 Umdrehung (UAUS)?
- 3. time_factor_v. Gewünschte Zeiteinheit pro interner Zeiteinheit
- 4. Getriebefaktor (gear_ratio) UEIN pro UAUS
- 5. Werte in Formel einsetzen


1.	2.	3.	4.	5.	ERGEBNIS Gekürzt
U/min 0 NK	1 U _{AUS} =	1 - 1 min =	1/1		num: 4096
U/ _{min}	1 U _{AUS}	4096 1 4096 min	.,.	$\frac{1U}{1U}$ $\frac{1}{\sqrt{min}}$	div: 1

BEISPIEL

Zunächst muss die gewünschte Einheit (Spalte 1) und die gewünschten Nachkommastellen (NK) festgelegt, sowie der Getriebefaktor und ggf. die Vorschubkonstante der Applikation ermittelt werden. Diese Vorschubkonstante wird dann in den gewünschten Positions-Einheiten dargestellt (Spalte 2). Anschließend wird die gewünschte Zeiteinheit in die Zeiteinheit des Servopositionierreglers umgerechnet (Spalte 3).

Letzlich können alle Werte in die Formel eingesetzt und der Bruch berechnet werden:

- 1. Gewünschte Einheit am Abtrieb (speed_units)
- 2. feed_constant. Wie viel position_units sind 1 Umdrehung (UAUS)?
- 3. time_factor_v. Gewünschte Zeiteinheit pro interner Zeiteinheit
- 4. Getriebefaktor (gear_ratio) UEIN pro UAUS
- 5. Werte in Formel einsetzen

1.	2.	3.	4.	5.	ERGEBNIS Gekürzt	3
U/min 2 NK 1/100 ^U / _{min} (^U / _{100 min})	1 U _{AUS} = 100 ^U / ₁₀₀	$1 \frac{1}{\min} = \frac{1}{4096 \min}$	2/3	$\frac{\frac{2U}{3U} \cdot \frac{4096 \%_{4096min}}{1\%_{min}}}{\frac{100 \%_{100}}{1U}} = \frac{8192 \%_{4096min}}{300 \%_{100min}}$	num: 20 div:	48 75
°/s 1 NK 1/10°/ _s °/ _{10s}	1 U _{AUS} = 3600 °/ ₁₀	$ 1 \stackrel{\perp}{=} = \\ 60 \frac{1}{\min} = 60.4096 \\ \frac{1}{4096 \min} $	1/1	$\frac{\frac{1U}{1U} \cdot \frac{60 \cdot 4096 \frac{1}{1/2096 min}}{\frac{3600 \frac{7}{10}}{1U}} = \frac{245760 \frac{1}{1/2096 min}}{3600 \frac{7}{100}}$	1	24 15
mm/s 1 NK 1/10 ^{mm} / _s (^{mm} / _{10s})	$63.15^{\text{mm}}/_{\text{U}} \Rightarrow$ $1 \text{ U}_{\text{AUS}} =$ $631.5^{\text{mm}}/_{10}$	$1\frac{1}{s} = 60.4096$ $\frac{1}{\text{min}} = 60.4096 \text{ min}$	4/5	$\frac{\frac{4U}{5U} \cdot \frac{60 \cdot 4096 \frac{1}{4096min}}{\frac{631.5 \frac{mm}{10}}{1U}} = \frac{1966080 \frac{0}{4096min}}{6315 \frac{mm}{10s}}$	num: 1310 div: 4	72 21

6.3.2.4 Objekt 6097_h: acceleration_factor

Das Objekt acceleration_factor dient zur Umrechnung aller Beschleunigungswerte der Applikation von acceleration_units in die interne Einheit Umdrehungen pro Minute pro 256 Sekunden. Es besteht aus Zähler und Nenner.

Index	6097 _h	AR
Name	acceleration_factor	
Object Code	ARRAY	
No. of Elements	2	
Data Type	UINT32	

ARRAY_MAIN

Sub-Index	01 _h
Description	numerator
Access	rw
PDO Mapping	yes
Units	-
Value Range	-
Default Value	100 _h

ARRAY_Eintrag

Sub-Index	02 _h
Description	divisor
Access	rw
PDO Mapping	yes
Units	-
Value Range	-
Default Value	1

ARRAY_Eintrag

Die Berechnung des **acceleration_factor** setzt sich ebenfalls aus zwei Teilen zusammen: Einem Umrechnungsfaktor von internen Längeneinheiten in **position_units** und einem Umrechnungsfaktor von internen Zeiteinheiten zum Quadrat in benutzerdefinierte Zeiteinheiten zum Quadrat (z.B. von Sekunden² in Minuten²). Der erste Teil entspricht der Berechnung des **position_factor** für den zweiten Teil kommt ein zusätzlicher Faktor hinzu:

time_factor_a Verhältnis zwischen interner Zeiteinheit zum Quadrat und benutzer-

definierter Zeiteinheit zum Quadrat (z.B. 1 min = 1 min 1 min = 60

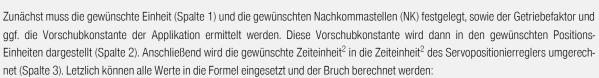
 $s \cdot 1 \ min = {}^{60}/_{256} \ 256 \ min \cdot s$

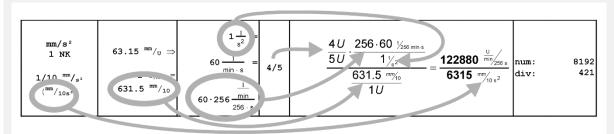
gear_ratio Getriebeverhältnis zwischen Umdrehungen am Eintrieb (U_{EIN}) und

Umdrehungen am Abtrieb (UAUS)

Bewegung in **position_units** (z.B. 1 U = 360° Grad)

Die Berechnung des acceleration_factors erfolgt mit folgender Formel:


acceleration_factor =
$$\frac{numerator}{divisor}$$
 = $\frac{gear_ratio \cdot time_factor_a}{feed_constant}$


Auch der acceleration_factor wird getrennt nach Zähler und Nenner in den Regler geschrieben werden, so dass eventuell erweitert werden muss.

BEISPIEL

- 1. Gewünschte Einheit am Abtrieb (acceleration_units)
- 2. feed_constant. Wie viel position_units sind 1 Umdrehung (UAUS)?
- 3. time_factor_a. Gewünschte Zeiteinheit² pro interne Zeiteinheit²
- 4. Getriebefaktor (gear_ratio) UEIN pro UAUS

5. Werte in Formel einsetzen

1.	2.	3.	4.	5.	ERGEBNIS Gekürzt
U/min/s 0 NK U/min s	1 U _{AUS} =	$1 \frac{1}{\min \cdot s} =$ $256 \frac{1}{\frac{\min}{256 \cdot s}}$	1/1	$\frac{\frac{1U}{1U} \cdot \frac{256 \frac{1}{256 \text{ min s}}}{1 \frac{1}{1U}}}{\frac{1U}{1U}} = \frac{256 \frac{\frac{U}{min}}{256 \cdot s}}{1 \frac{\frac{U}{min}}{s}}$	num: 256 div: 1
°/s² 1 NK 1/10 °/ _{s²} (°/ _{10s²})	1 U _{AUS} = 3600°/ ₁₀	$1 \frac{1}{s^{2}} = 60 \frac{1}{\min \cdot s} = 60.256 \frac{\frac{1}{\min}}{256 \cdot s}$	1/1	$\frac{\frac{1U}{1U} \cdot \frac{60 \cdot 256 \frac{1}{256 \text{ min s}}}{1 \frac{3600 \frac{9}{10}}{1U}} = \frac{15360 \frac{\frac{U}{min}/256.s}{3600 \frac{9}{10 s^2}}}{3600 \frac{9}{10 s^2}}$	num: 64 div: 15
U/min ² 2 NK 1/100 ^U / _{min²}	1 U _{AUS} = 100 ^U / ₁₀₀	$ \begin{array}{r} $	2/3	$\frac{\frac{2U}{3U} \cdot \frac{256 \frac{1}{256 \text{ min s}}}{60 \frac{1}{100}}}{\frac{100 \frac{1}{100}}{1U}} = \frac{512 \frac{\frac{U}{min}}{256 \text{ s}}}{18000 \frac{1}{100 \text{ min}^2}}$	num: 32 div: 1125
mm/s² 1 NK 1/10 ^{mm} / _{s²} (^{mm} / _{10s²})	$63.15 ^{\text{mm}}/_{\text{U}} \Rightarrow$ $1 \text{U}_{\text{AUS}} =$ $631.5 ^{\text{mm}}/_{10}$	$1 \frac{1}{s^{2}} = 60 \frac{1}{\min \cdot s} = 60.256 \frac{\frac{1}{\min}}{\frac{256 \cdot s}{100}}$	4/5	$\frac{\frac{4U}{5U} \cdot \frac{60 \cdot 256 \frac{1}{256 \text{ min.s}}}{1\frac{1}{s^2}}}{\frac{631.5 \frac{mm}{10}}{1U}} = \frac{122880 \frac{\frac{U}{min}}{256 \text{ s}}}{6315 \frac{mm}{10 \text{ s}^2}}$	num: 8192 div: 421

Index

6.3.2.5 Objekt 607E_h: polarity

607E_h

Das Vorzeichen der Positions- und Geschwindigkeitswerte des Reglers kann mit dem entsprechenden polarity_flag eingestellt werden. Dieses kann dazu dienen, die Drehrichtung des Motors bei gleichen Sollwerten zu invertieren.

In den meisten Applikationen ist es sinnvoll, das **position_polarity_flag** und das **velocity_polarity_flag** auf den gleichen Wert zu setzen.

Das Setzen des polarity_flags beeinflußt nur Parameter beim Lesen und beim Schreiben. Bereits im Regler vorhandene Parameter werden nicht verändert.

VAR_Eintrag

Name	polarity	
Object Code	VAR	
Data Type	UINT8	
Access	rw	VAR_Eintrag
PDO Mapping	yes	
Units	-	
Value Range	40 _h , 80 _h , C0 _h	
Default Value	0	

Bit	Wert	Name	Bedeutung
6	40 _h	velocity_polarity_flag	0: multiply by 1 (default) 1: multiply by -1 (invers)
7	80 _h	position_polarity_flag	0: multiply by 1 (default) 1: multiply by -1 (invers)

6.4 Endstufenparameter

6.4.1 Übersicht

Die Netzspannung wird über eine Vorladeschaltung in die Endstufe eingespeist. Beim Einschalten der Leistungsversorgung wird der Einschaltstrom begrenzt und das Laden überwacht. Nach erfolgter Vorladung des Zwischenkreises wird die Ladeschaltung überbrückt. Dieser Zustand ist Voraussetzung für das Erteilen der Reglerfreigabe. Die gleichgerichtete Netzspannung wird mit den Kondensatoren des Zwischenkreises geglättet. Aus dem Zwischenkreis wird der Motor über die IGBTs gespeist. Die Endstufe enthält eine Reihe von Sicherheitsfunktionen, die zum Teil parametriert werden können:

- Reglerfreigabelogik (Software- und Hardwarefreigabe)
- Überstromüberwachung

- Überspannungs-/ Unterspannungs-Überwachung des Zwischenkreises
- Leistungsteilüberwachung

6.4.2 Beschreibung der Objekte

Index	Objekt	Name	Тур	Attr.
6510 _h	VAR	drive_data		

6.4.2.1 Objekt 6510_h_10_h: enable_logic

Damit die Endstufe des Antriebsreglers aktiviert werden kann, müssen die digitalen Eingänge Endstufenfreigabe und Reglerfreigabe gesetzt sein: Die Endstufenfreigabe wirkt direkt auf die Ansteuersignale der Leistungstransistoren und würde diese auch bei einem defekten Mikroprozessor unterbrechen können. Das Wegnehmen der Endstufenfreigabe bei laufendem Motor bewirkt somit, dass der Motor ungebremst austrudelt bzw. nur durch die eventuell vorhandene Haltebremse gestoppt wird. Die Reglerfreigabe wird vom Mikrokontroller des Reglers verarbeitet. Je nach Betriebsart reagiert der Regler nach der Wegnahme dieses Signals unterschiedlich:

Positionierbetrieb und drehzahlgeregelter Betrieb

Der Motor wird nach der Wegnahme des Signals mit einer definierten Bremsrampe abgebremst. Die Endstufe wird erst abgeschaltet, wenn die Motordrehzahl unterhalb 10 min⁻¹ liegt und die eventuell vorhandene Haltebremse angezogen hat.

Momentengeregelter Betrieb

Die Endstufe wird unmittelbar nach der Wegnahme des Signals abgeschaltet. Gleichzeitig wird eine eventuell vorhandene Haltebremse angezogen. Der Motor trudelt also ungebremst aus bzw. wird nur durch die eventuell vorhandene Haltebremse gestoppt

ACHTUNG!

Beide Signale garantieren nicht, dass der Motor spannungsfrei ist.

Beim Betrieb des Reglers über den CAN-Bus können die beiden digitalen Eingänge Endstufenfreigabe und Reglerfreigabe gemeinsam auf 24V gelegt und die Freigabe über den CAN-Bus gesteuert werden. Dazu muss das Objekt 6510_h_10_h (enable_logic) auf zwei gesetzt werden. Aus Sicherheitsgründen erfolgt dies bei der Aktivierung von CANopen (auch nach einem Reset des Reglers) automatisch.

Index	6510 _h
Name	drive_data
Object Code	RECORD
No. of Elements	51 <- Dieses nur hier ändern !!

RECORD_MAIN

Sub-Index	10 _h
Description	enable_logic
Data Type	UINT16
Access	rw
PDO Mapping	no
Units	-
Value Range	02
Default Value	2

RECORD_Eintrag

Wert	Bedeutung
0	Digitale Eingänge Endstufenfreigabe + Reglerfreigabe
1	Digitale Eingänge Endstufenfreigabe + Reglerfreigabe + RS232
2	Digitale Eingänge Endstufenfreigabe + Reglerfreigabe + CAN

6.4.2.2 Objekt 6510_h_30_h: pwm_frequency

Die Schaltverluste der Endstufe sind proportional zur Schaltfrequenz der Leistungstransistoren. Aus einigen Geräten der item C Serie kann durch Halbieren der normalen PWM-Frequenz etwas mehr Leistung entnommen werden. Dadurch steigt allerdings die durch die Endstufe verursachte Stromwelligkeit. Die Umschaltung ist nur bei ausgeschalteter Endstufe möglich.

Sub-Index	30 _h
Description	pwm_frequency
Data Type	UINT16
Access	rw
PDO Mapping	no
Units	-
Value Range	0, 1
Default Value	0

RECORD_Eintrag

Wert	Bedeutung
0	Normale Endstufenfrequenz
1	Halbe Endstufenfrequenz

6.4.2.3 Objekt 6510_h_3A_h: enable_enhanced_modulation

Mit dem Objekt enable_enhanced_modulation kann die erweiterte Sinusmodulation aktiviert werden. Sie erlaubt eine bessere Ausnutzung der Zwischenkreisspannung und damit um ca. 14% höhere Drehzahlen. Nachteilig ist in bestimmten Applikationen, dass das Regelverhalten und der Rundlauf des Motors bei sehr kleinen Drehzahlen geringfügig schlechter wird. Der Schreibzugriff ist nur bei ausgeschalteter Endstufe möglich.

Sub-Index	3A _h
Description	enable_enhanced_modulation
Data Type	UINT16
Access	rw
PDO Mapping	no
Units	-
Value Range	0, 1
Default Value	0

Wert	Bedeutung
0	Erweiterte Sinusmodulation AUS
1	Erweiterte Sinusmodulation EIN

Die Aktivierung der erweiterten Sinusmodulation wird erst nach einem Reset wirksam. Der Parametersatz muss somit zunächst gespeichert (save_all_parameters) und anschließend ein Reset durchgeführt werden.

6.4.2.4 Objekt 6510_h_31_h: power_stage_temperature

Die Temperatur der Endstufe kann über das Objekt **power_stage_temperature** ausgelesen werden. Wenn die im Objekt **6510_h_32_h** (**max_power_stage_temperature**) angegebene Temperatur überschritten wird, schaltet die Endstufe aus und eine Fehlermeldung wird abgesetzt.

Sub-Index	31 _h
Description	power_stage_temperature
Data Type	INT16
Access	ro
PDO Mapping	yes
Units	°C
Value Range	-
Default Value	-

6.4.2.5 Objekt 6510_h_32_h: max_power_stage_temperature

Die Temperatur der Endstufe kann über das Objekt 6510_h_31_h (power_stage_temperature) ausgelesen werden. Wenn die im Objekt max_power_stage_temperature angegebene Temperatur überschritten wird, schaltet die Endstufe aus und eine Fehlermeldung wird abgesetzt.

Sub-Index	32 _h
Description	max_power_stage_temperature
Data Type	INT16
Access	ro
PDO Mapping	no
Units	°C
Value Range	100
Default Value	geräteabhängig

RECORD_Eintrag

Gerätetyp	Wert
C 1-02	100°C
C 1-05	80°C
C 3-05	80°C
C 3-10	80°C

6.4.2.6 Objekt 6510_h_33_h: nominal_dc_link_circuit_voltage

Über das Objekt **nominal_dc_link_circuit_voltage** kann die Gerätenennspannung in Millivolt ausgelesen werden.

Sub-Index	33 _h
Description	nominal_dc_link_circuit_voltage
Data Type	UINT32
Access	ro
PDO Mapping	no
Units	mV
Value Range	-
Default Value	geräteabhängig

Gerätetyp	Wert
C 1-02	360000

C 1-05	360000
C 3-05	560000
C 3-10	560000

6.4.2.7 Objekt 6510_h_34_h: actual_dc_link_circuit_voltage

Über das Objekt **actual_dc_link_circuit_voltage** kann die aktuelle Spannung des Zwischenkreises in Millivolt ausgelesen werden.

Sub-Index	34 _h
Description	actual_dc_link_circuit_voltage
Data Type	UINT32
Access	ro
PDO Mapping	yes
Units	mV
Value Range	-
Default Value	-

RECORD_Eintrag

6.4.2.8 Objekt 6510_h_35_h: max_dc_link_circuit_voltage

Das Objekt max_dc_link_circuit_voltage gibt an, ab welcher Zwischenkreisspannung die Endstufe aus Sicherheitsgründen sofort ausgeschaltet und eine Fehlermeldung abgesetzt wird.

Sub-Index	35 _h
Description	max_dc_link_circuit_voltage
Data Type	UINT32
Access	ro
PDO Mapping	no
Units	mV
Value Range	-
Default Value	geräteabhängig

Gerätetyp	Wert
C 1-02	460000
C 1-05	460000
C 3-05	800000
C 3-10	800000

6.4.2.9 Objekt 6510_h_36_h: min_dc_link_circuit_voltage

Der Regler verfügt über eine Unterspannungsüberwachung. Diese kann über das Objekt $6510_h_37_h$ (enable_dc_link_undervoltage_error) aktiviert werden. Das Objekt $6510_h_36_h$ (min_dc_link_circuit_voltage) gibt an, bis zu welcher unteren Zwischenkreisspannung der Regler arbeiten soll. Unterhalb dieser Spannung wird der Fehler E 02 0 ausgelöst, wenn dieses mit dem nachfolgenden Objekt aktiviert wurde.

Sub-Index	36 _h
Description	min_dc_link_circuit_voltage
Data Type	UINT32
Access	rw
PDO Mapping	no
Units	mV
Value Range	01000000
Default Value	0

RECORD_Eintrag

6.4.2.10 Objekt 6510_h_37_h: enable_dc_link_undervoltage_error

Mit dem Objekt **enable_dc_link_undervoltage_error** kann die Unterspannungsüberwachung aktiviert werden. Im Objekt **6510_{h_}36_h** (**min_dc_link_circuit_voltage**) ist anzugeben, bis zu welcher unteren Zwischenkreisspannung der Regler arbeiten soll.

Sub-Index	37 _h
Description	enable_dc_link_undervoltage_error
Data Type	UINT16
Access	rw
PDO Mapping	no
Units	-
Value Range	0, 1
Default Value	0

Wert	Bedeutung	
0	Unterspannungsfehler AUS	(Reaktion WARNUNG)
1	Unterspannungsfehler EIN	(Reaktion REGLERFREIGABE AUS)

Die Aktivierung des Fehlers 02-0 erfolgt durch Änderung der Fehlerreaktion. Reaktionen, die zum Stillsetzen des Antriebs führen, werden als **EIN**, alle anderen als **AUS** zurückgegeben. Beim Beschreiben mit 0 wird die Fehlerreaktion WARNUNG gesetzt, beim Beschreiben mit 1 die Fehlerreaktion REGLERFREIGABE AUS.

Siehe hierzu auch Kapitel 6.18, Fehlermanagement.

6.4.2.11 Objekt 6510_{h} 40_h: nominal_current

Mit dem Objekt nominal_current kann der Gerätenennstrom ausgelesen werden. Es handelt sich gleichzeitig um den oberen Grenzwert, der in das Objekt 6075_h (motor_rated_current) eingeschrieben werden kann.

Sub-Index	40 _h
Description	nominal_current
Data Type	UINT32
Access	ro
PDO Mapping	no
Units	mA
Value Range	-
Default Value	geräteabhängig

RECORD_Eintrag

Gerätetyp	Wert
C 1-02	2500
C 1-05	5000
C 3-05	2500
C 3-10	5000

Aufgrund eines Leistungsderating werden abhängig von der Reglerzykluszeit und der Endstufentaktfrequenz gegebenenfalls andere Werte angezeigt.

6.4.2.12 Objekt 6510_{h} 41_h: peak_current

Mit dem Objekt **peak_current** kann der Gerätespitzenstrom ausgelesen werden. Es handelt sich gleichzeitig um den oberen Grenzwert, der in das Objekt **6073**_h (max_current) eingeschrieben werden kann.

Sub-Index	41 _h
Description	peak_current
Data Type	UINT32
Access	ro
PDO Mapping	no
Units	mA
Value Range	-
Default Value	geräteabhängig

RECORD_Eintrag

Gerätetyp	Wert
C 1-02	5000
C 1-05	10000
C 3-05	7500
C 3-10	15000

Aufgrund eines Leistungsderating werden abhängig von der Reglerzykluszeit und der Endstufentaktfrequenz gegebenenfalls andere Werte angezeigt.

6.5 Stromregler und Motoranpassung

Vorsicht!

Falsche Einstellungen der Stromreglerparameter und der Strombegrenzungen können den **Motor** und unter Umständen auch den **Servoregler** innerhalb kürzester Zeit **zerstören**!

6.5.1 Übersicht

Der Parametersatz des Servoreglers muss für den angeschlossenen Motor und den verwendeten Kabelsatz angepasst werden. Betroffen sind folgende Parameter:

Nennstrom Abhängig vom Motor

Überlastbarkeit Abhängig vom Motor

Polzahl Abhängig vom Motor

Stromregler Abhängig vom Motor

Drehsinn Abhängig vom Motor und der Phasenfolge im Motor- und Winkelgeberkabel

Offsetwinkel Abhängig vom Motor und der Phasenfolge im Motor- und Winkelgeberkabel

Diese Daten müssen beim erstmaligen Einsatz eines Motortyps mit dem Programm item Motion Soft™ bestimmt werden. Für eine Reihe von Motoren können Sie auch fertige Parametersätze über Ihren Händler beziehen. Bitte beachten Sie, dass Drehsinn und Offsetwinkel auch vom verwendeten Kabelsatz abhängen. Die Parametersätze arbeiten daher nur bei identischer Verkabelung.

Bei verdrehter Phasenfolge im Motor- oder Winkelgeberkabel kann es zu einer Mitkopplung kommen, so dass die Drehzahl im Motor nicht geregelt werden kann. Der Motor kann unkontrolliert durchdrehen!

6.5.2 Beschreibung der Objekte

Index	Objekt	Name	Тур	Attr.
6075 _h	VAR	motor_rated_current	UINT32	rw
6073 _h	VAR	max_current	UINT16	rw
604D _h	VAR	pole_number	UINT8	rw
6410 _h	RECORD	motor_data		rw
60F6 _h	RECORD	torque_control_parameters		rw

6.5.2.1 Objekt 6075h: motor_rated_current

Dieser Wert ist dem Motortypenschild zu entnehmen und wird in der Einheit Milliampere eingegeben. Es wird immer der Effektivwert (RMS) angenommen. Es kann kein Strom vorgegeben werden, der oberhalb des Reglernennstromes (6510h_40h: nominal_current) liegt.

Index	6075 _h	VAR_Eintrag
Name	motor_rated_current	
Object Code	VAR	
Data Type	UINT32	

Access	rw	VAR_Eintrag
PDO Mapping	yes	., <u></u> ag
Units	mA	
Value Range	0nominal_current	
Default Value	296	

Wird das Objekt 6075_h (motor_rated_current) mit einem neuen Wert beschrieben, muss in jedem Fall auch das Objekt 6073_h (max_current) neu parametriert werden.

6.5.2.2 Objekt 6073_h: max_current

Servomotoren dürfen in der Regel für einen bestimmten Zeitraum überlastet werden. Mit diesem Objekt wird der höchstzulässige Motorstrom eingestellt. Er bezieht sich auf den Motornennstrom (Objekt 6075_h: motor_rated_current) und wird in Tausendsteln eingestellt. Der Wertebereich wird nach oben durch den maximalen Reglerstrom (Objekt 6510_h_41_h: peak_current) begrenzt. Viele Motoren dürfen kurzzeitig um den Faktor 2 überlastet werden. In diesem Fall ist in dieses Objekt der Wert 2000 einzuschreiben.

Das Objekt 6073_h (max_current) darf erst beschrieben werden, wenn zuvor das Objekt 6075_h (motor_rated_current) gültig beschrieben wurde.

Index	6073 _h
Name	max_current
Object Code	VAR
Data Type	UINT16

VAR_Eintrag

Access	rw
PDO Mapping	yes
Units	per thousands of rated current
Value Range	-
Default Value	2023

VAR_Eintrag

6.5.2.3 Objekt 604D_h: pole_number

Die Polzahl des Motors ist dem Motordatenblatt oder dem Parametrierprogramm item Motion Soft™ zu entnehmen. Die Polzahl ist immer geradzahlig. Oft wird statt der Polzahl die Polpaarzahl angegeben. Die Polzahl entspricht dann der doppelten Polpaarzahl.

Dieses Objekt wird durch restore default parameters nicht geändert.

Index	604D _h	VAR_Eintrag
Name	pole_number	
Object Code	VAR	
Data Type	UINT8	

Access	rw	VA
PDO Mapping	yes	
Units	-	
Value Range	2 254	
Default Value	4 (nach //W/T/)	

AR_Eintrag

6.5.2.4 Objekt 6410_h_03_h: iit_time_motor

Servomotoren dürfen in der Regel für einen bestimmten Zeitraum überlastet werden. Über dieses Objekt wird angegeben, wie lange der angeschlossene Motor mit dem im Objekt 6073_h (max_current) angegebenen Strom bestromt werden darf. Nach Ablauf der IIT-Zeit wird der Strom zum Schutz des Motors automatisch auf den im Objekt 6075_h (motor_rated_current) angegebenen Wert begrenzt. Die Standardeinstellung liegt bei zwei Sekunden und trifft für die meisten Motoren zu.

Index	6410 _h	RECORD_MAIN
Name	motor_data	
Object Code	RECORD	
No. of Elements	5	

Sub-Index	03 _h
Description	iit_time_motor
Data Type	UINT16
Access	rw
PDO Mapping	no
Units	ms
Value Range	010000
Default Value	2000

RECORD_Eintrag

6.5.2.5 Objekt 6410_{h} _ 04_{h} : iit_ratio_motor

Über das Objekt kann **iit_ratio_motor** kann die aktuelle Auslastung der I²t-Begrenzung in Promille ausgelesen werden.

Sub-Index	04 _h
Description	iit_ratio_motor
Data Type	UINT16
Access	ro
PDO Mapping	no
Units	promille
Value Range	-
Default Value	-

6.5.2.6 Objekt 6510_h_38_h: iit_error_enable

Über das Objekt iit_error_enable wird festgelegt, wie sich der Regler bei Auftreten der I²t-Begrenzung verhält. Entweder wird dieses nur im statusword angezeigt, oder es wird Fehler E 3 1 0 ausgelöst.

Index	6510 _h
Name	drive_data
Object Code	RECORD
No. of Elements	51<- LINK! Nicht hier ändern !!

RECORD_MAIN

Sub-Index	38 _h
Description	iit_error_enable
Data Type	UINT16
Access	rw
PDO Mapping	no
Units	-
Value Range	0, 1
Default Value	0

RECORD_Eintrag

Wert	Bedeutung	
0	I ² t-Fehler AUS	(Priorität WARNUNG)
1	l ² t-Fehler EIN	(Priorität REGLERFREIGABE AUS)

Die Aktivierung des Fehlers 31-0 erfolgt durch Änderung der Fehlerreaktion. Reaktionen, die zum Stillsetzen des Antriebs führen, werden als **EIN**, alle anderen als **AUS** zurückgegeben. Beim Beschreiben mit 0 wird die Fehlerreaktion WARNUNG gesetzt, beim Beschreiben mit 1 die Fehlerreaktion REGLERFREIGABE AUS. Siehe Kapitel 6.18, Fehlermanagement.

6.5.2.7 Objekt 6410_h_10_h: phase_order

In der Phasenfolge (**phase_order**) werden Verdrehungen zwischen Motorkabel und Winkelgeberkabel berücksichtigt. Sie kann dem Parametrierprogramm item Motion Soft™ entnommen werden. Eine Null entspricht "rechts", eine Eins "links".

Sub-Index	10 _h
Description	phase_order
Data Type	INT16
Access	rw
PDO Mapping	yes
Units	-
Value Range	0, 1
Default Value	0

RECORD_Eintrag

Wert	Bedeutung
0	Rechts
1	Links

6.5.2.8 Objekt 6410_h_11_h: encoder_offset_angle

Bei den verwendeten Servomotoren befinden sich Dauermagnete auf dem Rotor. Diese erzeugen ein magnetisches Feld, dessen Ausrichtung zum Stator von der Rotorlage abhängt. Für die elektronische Kommutierung muss der Regler das elektromagnetische Feld des Stators immer im richtigen Winkel zu diesem Permanentmagnetfeld einstellen. Er bestimmt hierzu laufend mit einem Winkelgeber (Resolver etc.) die Rotorlage.

Die Orientierung des Winkelgebers zum Dauermagnetfeld muss in das Objekt **encoder_offset_angle** eingetragen werden. Mit dem Parametrierprogramm item Motion Soft™ kann dieser Winkel bestimmt werden (Parameter / Geräteparameter / Winkelgeber-Einstellungen). Der mit dem item Motion Soft™ bestimmte Winkel liegt im Bereich von ±180°. Er muss folgendermaßen umgerechnet werden:

encoder_offset_angle = "Offsetwinkel des Winkelgebers" ×
$$\frac{32767}{180^{\circ}}$$

Dieses Objekt wird durch restore_default_parameters nicht geändert.

Index	6410 _h	RECORD_MAIN
Name	motor_data	
Object Code	RECORD	
No. of Elements	5	

Sub-Index	11 _h
Description	encoder_offset_angle
Data Type	INT16
Access	rw
PDO Mapping	yes
Units	-
Value Range	-3276732767
Default Value	E000 _h (-45°) (nach /////!)

6.5.2.9 Objekt 6410_h_14_h: motor_temperature_sensor_polarity

Über dieses Objekt kann festgelegt werden, ob ein Öffner oder ein Schließer als digitaler Motortemperatur- Sensor verwendet wird.

Sub-Index	14 _h
Description	motor_temperature_sensor_polarity
Data Type	INT16
Access	rw
PDO Mapping	yes
Units	-
Value Range	0, 1
Default Value	0

RECORD_Eintrag Ab Firmware 3.2.0.1.

Wert	Bedeutung
0	Öffner
1	Schließer

6.5.2.10 Objekt 6510_h_2E_h: motor_temperature

Mit diesem Objekt kann die aktuelle Motortemperatur ausgelesen werden, falls ein analoger Temperatursensor angeschlossen ist. Anderenfalls ist das Objekt undefiniert.

Index	6510 _h	R
Name	drive_data	
Object Code	RECORD	
No. of Elements	51	

RECORD_MAIN

Sub-Index	2E _h
Description	motor_temperature
Data Type	INT16
Access	ro
PDO Mapping	yes
Units	°C
Value Range	-
Default Value	-

RECORD_Eintrag Ab Firmware 3.5.x.1.

6.5.2.11 Objekt 6510_h_2F_h: max_motor_temperature

Wird die in diesem Objekt definierte Motortemperatur überschritten, erfolgt eine Reaktion gemäß Fehlermanagement (Fehler 3-0, Übertemperatur Motor analog). Ist eine Reaktion parametriert, die zum Stillsetzen des Antriebs führt, wird eine Emergency- Message gesendet. Zur Parametrierung des Fehlermanagements siehe Kap. 6.18

Sub-Index	2F _h
Description	max_motor_temperature
Data Type	INT16
Access	rw
PDO Mapping	no
Units	°C
Value Range	20300
Default Value	100

RECORD_Eintrag Ab Firmware 3.5.x.1.

6.5.2.12 Objekt 60F6_h: torque_control_parameters

Die Daten des Stromreglers müssen dem Parametrierprogramm item Motion Soft™ entnommen werden. Hierbei sind folgende Umrechungen zu beachten:

Die Verstärkung des Stromreglers muss mit 256 multipliziert werden. Bei einer Verstärkung von 1.5 im Menü "Stromregler" des Parametrierprogramms item Motion SoftTM ist in das Objekt **torque_control_gain** der Wert 384 = 180_h einzuschreiben.

Die Zeitkonstante des Stromreglers ist im Parametrierprogramm item Motion Soft™ in Millisekunden angegeben. Um diese Zeitkonstante in das Objekt torque_control_time übertragen zu können, muss sie zuvor in Mikrosekunden umgerechnet werden. Bei einer angegebenen Zeit von 0.6 Millisekunden ist entsprechend der Wert 600 in das Objekt torque_control_time einzutragen.

Index	60F6 _h
Name	torque_control_parameters
Object Code	RECORD
No. of Elements	2

RECORD_MAIN

Sub-Index	01 _h
Description	torque_control_gain
Data Type	UINT16
Access	rw
PDO Mapping	no
Units	256 = "1"
Value Range	032*256
Default Value	3*256 (768)

RECORD_Eintrag

Sub-Index	02 _h
Description	torque_control_time
Data Type	UINT16
Access	rw
PDO Mapping	no
Units	μs
Value Range	104 64401
Default Value	1020

6.6 Drehzahlregler

6.6.1 Übersicht

Der Parametersatz des Servoreglers muss für die Applikation angepasst werden. Besonders die Verstärkung ist stark abhängig von eventuell an den Motor angekoppelten Massen. Die Daten müssen bei der Inbetriebnahme der Anlage mit Hilfe des Programms item Motion Soft™ optimal bestimmt werden.

Falsche Einstellungen der Drehzahlreglerparameter können zu starken Schwingungen führen und eventuell Teile der Anlage zerstören!

6.6.2 Beschreibung der Objekte

Index	Objekt	Name	Тур	Attr.
60F9 _h	RECORD	velocity_control_parameters		rw
2073 _h	VAR	velocity_display_filter_time	UINT32	rw

6.6.2.1 Objekt 60F9_h: velocity_control_parameters

Die Daten des Drehzahlreglers müssen dem Parametrierprogramm item Motion Soft™ entnommen werden. Hierbei sind folgende Umrechungen zu beachten:

Die Verstärkung des Drehzahlreglers muss mit 256 multipliziert werden.

Bei einer Verstärkung von 1.5 im Menü "Drehzahlregler" des Parametrierprogramms item Motion Soft™ ist in das Objekt velocity_control_gain der Wert 384 = 180_h einzuschreiben.

Die Zeitkonstante des Drehzahlreglers ist im Parametrierprogramm item Motion Soft™ in Millisekunden angegeben. Um diese Zeitkonstante in das Objekt velocity_control_time übertragen zu können, muss sie zuvor in Mikrosekunden umgerechnet werden. Bei einer angegebenen Zeit von 2.0 Millisekunden ist entsprechend der Wert 2000 in das Objekt velocity control time einzutragen.

Index	60F9 _h	RECORD_MAIN
Name	velocity_control_parameter_set	
Object Code	RECORD	
No. of Elements	3	

RECORD_Eintrag

Sub-Index	01 _h
Description	velocity_control_gain
Data Type	UINT16
Access	rw
PDO Mapping	no
Units	256 = Gain 1
Value Range	2064*256 (16384)
Default Value	256

RECORD_Eintrag

Sub-Index	02 _h
Description	velocity_control_time
Data Type	UINT16
Access	rw
PDO Mapping	no
Units	μs
Value Range	132000
Default Value	2000

RECORD_Eintrag

Sub-Index	04 _h
Description	velocity_control_filter_time
Data Type	UINT16
Access	rw
PDO Mapping	no
Units	μs
Value Range	132000
Default Value	400

6.6.2.2 Objekt 2073_h: velocity_display_filter_time

Mit dem Objekt **velocity_display_filter_time** kann die Filterzeit des Anzeigedrehzahl-Istwertfilters eingestellt werden.

Index	2073 _h
Name	velocity_display_filter_time
Object Code	VAR
Data Type	UINT32

VAR_Eintrag Ab Firmware 3.5.x.1

Access	rw
PDO Mapping	no
Units	με
Value Range	100050000
Default Value	20000

VAR_Eintrag

Bitte beachten Sie, dass das Objekt **velocity_actual_value_filtered** für den Durchdrehschutz verwendet wird. Bei sehr großer Filterzeit wird ein Durchdrehfehler erst mit entsprechender Verzögerung erkannt.

6.7 Lageregler (Position Control Function)

6.7.1 Übersicht

In diesem Kapitel sind alle Parameter beschrieben, die für den Lageregler erforderlich sind. Am Eingang des Lagereglers liegt der Lage-Sollwert (position_demand_value) vom Fahrkurven-Generator an. Außerdem wird der Lage-Istwert (position_actual_value) vom Winkelgeber (Resolver, Inkrementalgeber etc.) zugeführt. Das Verhalten des Lagereglers kann durch Parameter beeinflusst werden. Um den Lageregelkreis stabil zu halten, ist eine Begrenzung der Ausgangsgröße (control_effort) möglich. Die Ausgangsgröße wird als Drehzahl-Sollwert dem Drehzahlregler zugeführt. Alle Ein- und Ausgangsgrößen des Lagereglers werden in der Factor Group von den applikationsspezifischen Einheiten in die jeweiligen internen Einheiten des Reglers umgerechnet.

Folgende Unterfunktionen sind in diesem Kapitel definiert:

Schleppfehler (Following_Error)

Als Schleppfehler wird die Abweichung des Lage-Istwertes (position_actual_ value) vom Lage-Sollwert (position_demand_value) bezeichnet. Wenn dieser Schleppfehler für einen bestimmten Zeitraum größer ist als im Schleppfehler-Fenster (following_error_window) angegeben, so wird das Bit 13 following_error im Objekt statusword gesetzt. Der zulässige Zeitraum kann über das Objekt following_error_time_out vorgegeben werden.

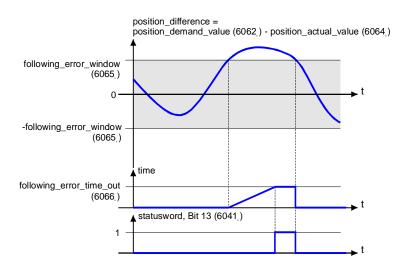


Abbildung 6.6: Schleppfehler – Funktionsübersicht

Die Abbildung 6.7 zeigt, wie die Fensterfunktion für die Meldung "Schleppfehler" definiert ist. Symmetrisch um die Sollposition (**position_demand_value**) x_i ist der Bereich zwischen x_i - x_0 und x_i + x_0 definiert. Die Positionen x_{t2} und x_{t3} liegen z.B. außerhalb dieses Fensters (**following_error_window**). Wenn der Antrieb dieses Fenster verlässt und nicht in der im Objekt **following_error_time_out** vorgegebenen Zeit in das Fenster zurückkehrt, dann wird das Bit 13 **following_error** im **statusword** gesetzt.

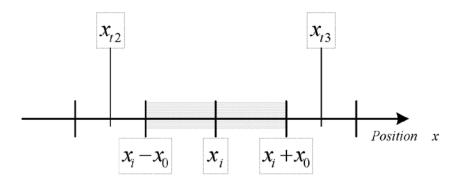


Abbildung 6.7: Schleppfehler

2. Position erreicht (Position Reached)

Diese Funktion bietet die Möglichkeit, ein Positionsfenster um die Zielposition (target_position) herum zu definieren. Wenn sich die Ist-Position des Antriebs für eine bestimmte Zeit – die position_window_time – in diesem Bereich befindet, dann wird das damit verbundene Bit 10 (target_reached) im statusword gesetzt.

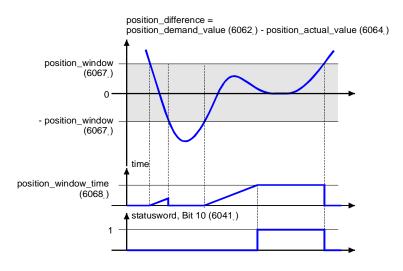


Abbildung 6.8: Position erreicht – Funktionsübersicht

Die Abbildung 6.9 zeigt, wie die Fensterfunktion für die Meldung "Position erreicht" definiert ist. Symmetrisch um die Zielposition ($target_position$) x_i ist der Positionsbereich zwischen x_r x_0 und x_i+x_0 definiert. Die Positionen x_{t0} und x_{t1} liegen z.B. innerhalb dieses Positionsfensters ($position_window$). Wenn sich der Antrieb in diesem Fenster befindet, dann wird im Regler ein Timer gestartet. Wenn dieser Timer die im Objekt $position_window_time$ vorgegebene Zeit erreicht und sich der Antrieb während dieser Zeit ununterbrochen im gültigen Bereich zwischen x_rx_0 und x_i+x_0 befindet, dann wird Bit 10 $target_reached$ im tatusword gesetzt. Sobald der Antrieb den zulässigen Bereich verlässt, wird sowohl das Bit 10 als auch der Timer auf Null gesetzt.

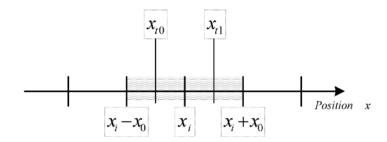


Abbildung 6.9: Position erreicht

6.7.2 Beschreibung der Objekte

6.7.2.1 In diesem Kapitel behandelte Objekte

Index	Objekt	Name	Тур	Attr.
202D _h	VAR	position_demand_sync_value	INT32	ro
2030 _h	VAR	set_position_absolute	INT32	WO
6062 _h	VAR	position_demand_value	INT32	ro
6063 _h	VAR	position_actual_value*	INT32	ro
6064 _h	VAR	position_actual_value	INT32	ro
6065 _h	VAR	following_error_window	UINT32	rw
6066 _h	VAR	following_error_time_out	UINT16	rw
6067 _h	VAR	position_window	UINT32	rw
6068 _h	VAR	position_window_time	UINT16	rw
607B _h	ARRAY	position_range_limit	INT32	rw

Index	Objekt	Name	Тур	Attr.
60FA _h	VAR	control_effort	INT32	ro
60FB _h	RECORD	position_control_parameter_set		rw
60FC _h	VAR	position_demand_value*	INT32	ro
6510 _h _20 _h	VAR	position_range_limit_enable	UINT16	rw
6510 _h _22 _h	VAR	position_error_switch_off_limit	UINT32	rw

6.7.2.2 Betroffene Objekte aus anderen Kapiteln

Index	Objekt	Name	Тур	Kapitel
607A _h	VAR	target_position	INT32	8.3 Betriebsart Positionieren
607C _h	VAR	home_offset	INT32	8.2 Referenzfahrt
607D _h	VAR	software_position_limit	INT32	8.3 Betriebsart Positionieren
607E _h	VAR	polarity	UINT8	6.2 Umrechnungsfaktoren
6093 _h	VAR	position_factor	UINT32	6.2 Umrechnungsfaktoren
6094 _h	ARRAY	velocity_encoder_factor	UINT32	6.2 Umrechnungsfaktoren
6096 _h	ARRAY	acceleration_factor	UINT32	6.2 Umrechnungsfaktoren
6040 _h	VAR	controlword	INT16	6.18 Gerätesteuerung
6041 _h	VAR	statusword	UINT16	6.18 Gerätesteuerung

6.7.2.3 Objekt 60FB_h: position_control_parameter_set

Der Parametersatz des Servoreglers muss für die Applikation angepasst werden. Die Daten des Lagereglers müssen bei der Inbetriebnahme der Anlage mit Hilfe des Programms item Motion Soft™ optimal bestimmt werden.

Falsche Einstellungen der Lagereglerparameter können zu starken Schwingungen führen und eventuell Teile der Anlage zerstören!

Der Lageregler vergleicht die Soll-Lage mit der Ist-Lage und bildet aus der Differenz unter Berücksichtigung der Verstärkung und eventuell des Integrators eine Korrekturgeschwindigkeit (Objekt 60FAh: control_effort), die dem Drehzahlregler zugeführt wird. Der Lageregler ist, gemessen am Strom-

und Drehzahlregler, relativ langsam. Der Regler arbeitet daher intern mit Aufschaltungen, so dass die Ausregelarbeit für den Lageregler minimiert wird und der Regler schnell einschwingen kann.

Als Lageregler genügt normalerweise ein Proportional-Glied. Die Verstärkung des Lagereglers muss mit 256 multipliziert werden. Bei einer Verstärkung von 1.5 im Menü "Lageregler" des Parametrierprogramms item Motion Soft™ ist in das Objekt **position_control_gain** der Wert 384 einzuschreiben.

Normalerweise kommt der Lageregler ohne Integrator aus. Dann ist in das Objekt **position_control_time** der Wert Null einzuschreiben. Andernfalls muss die Zeitkonstante des Lagereglers in Mikrosekunden umgerechnet werden. Bei einer Zeit von 4.0 Millisekunden ist entsprechend der Wert 4000 in das Objekt **position_control_time** einzutragen.

Da der Lageregler schon kleinste Lageabweichungen in nennenswerte Korrekturgeschwindigkeiten umsetzt, würde es im Falle einer kurzen Störung (z.B. kurzzeitiges Klemmen der Anlage) zu sehr heftigen Ausregelvorgängen mit sehr großen Korrekturgeschwindigkeiten kommen. Dieses ist zu vermeiden, wenn der Ausgang des Lagereglers über das Objekt **position_control_v_max** sinnvoll (z.B. 500 min⁻¹) begrenzt wird.

Mit dem Objekt **position_error_tolerance_window** kann die Größe einer Lageabweichung definiert werden, bis zu der der Lageregler nicht eingreift (Totbereich). Dieses kann zur Stabilisierung eingesetzt werden, wenn z.B. Spiel in der Anlage vorhanden ist.

Index	60FB _h	RECORE
Name	position_control_parameter_set	
Object Code	RECORD	
No. of Elements	4	

RECORD_MAIN

Sub-Index	01 _h
Description	position_control_gain
Data Type	UINT16
Access	rw
PDO Mapping	no
Units	256 = "1"
Value Range	064*256 (16384)
Default Value	102

RECORD_Eintrag

Sub-Index	02 _h
Description	position_control_time
Data Type	UINT16
Access	rw
PDO Mapping	no
Units	μѕ
Value Range	0
Default Value	0

RECORD_Eintrag

Sub-Index	04 _h
Description	position_control_v_max
Data Type	UINT32
Access	rw
PDO Mapping	no
Units	speed units
Value Range	0131072 min ⁻¹
Default Value	500 min ⁻¹

RECORD_Eintrag

Sub-Index	05 _h	RECORD_Eintrag
Description	position_error_tolerance_window	
Data Type	UINT32	
Access	rw	
PDO Mapping	no	
Units	position units	
Value Range	165536 (1 U)	
Default Value	2 (1 / 32768 U)	

6.7.2.4 Objekt 6062_h: position_demand_value

Über dieses Objekt kann der aktuelle Lage-Sollwert ausgelesen werden. Diese wird vom Fahrkurven-Generator in den Lageregler eingespeist.

Index	6062 _h	VAR_Eintrag
Name	position_demand_value	
Object Code	VAR	
Data Type	INT32	

Access	ro
PDO Mapping	yes
Units	position units
Value Range	-
Default Value	-

VAR_Eintrag

6.7.2.5 Objekt 202D_h: position_demand_sync_value

Über dieses Objekt kann die Soll-Lage des Synchronisationsgeber ausgelesen werden. Diese wird durch das Objekt 2022_h synchronization_encoder_select (Kap. 6.11) definiert. Dieses Objekt wird in benutzerdefinierten Einheiten angegeben.

Index	202D _h
Name	position_demand_sync_value
Object Code	VAR
Data Type	INT32

VAR_Eintrag Ab Firmware 3.2.0.

Access	ro
PDO Mapping	no
Units	position units
Value Range	-
Default Value	-

VAR_Eintrag

6.7.2.6 Objekt 6064_h: position_actual_value

Über dieses Objekt kann die Ist-Lage ausgelesen werden. Diese wird dem Lageregler vom Winkelgeber aus zugeführt. Dieses Objekt wird in benutzerdefinierten Einheiten angegeben.

Index	6064 _h	VAR_Eintrag
Name	position_actual_value	
Object Code	VAR	
Data Type	INT32	

Access	ro	VAR_Eintrag
PDO Mapping	yes	<u>_</u> ag
Units	position units	
Value Range	-	
Default Value	-	

6.7.2.7 Objekt 6065_h: following_error_window

Das Objekt following_error_window (Schleppfehler-Fenster) definiert um den Lage-Sollwert (position_demand_value) einen symmetrischen Bereich. Wenn sich der Lage-Istwert (position_actual_value) außerhalb des Schleppfehler-Fensters (following_ error_window) befindet, dann tritt ein Schleppfehler auf und das Bit 13 im Objekt statusword wird gesetzt. Folgende Ursachen können einen Schleppfehler verursachen:

- der Antrieb ist blockiert
- die Positioniergeschwindigkeit ist zu groß
- die Beschleunigungswerte sind zu groß
- das Objekt following_error_window ist mit einem zu kleinen Wert besetzt
- der Lageregler ist nicht richtig parametriert

Index	6065 _h	VAR_Eintrag
Name	following_error_window	
Object Code	VAR	
Data Type	UINT32	

Access	rw
PDO Mapping	yes
Units	position units
Value Range	-
Default Value	9101 (9101 / 65536 U = 50°)

VAR_Eintrag

6.7.2.8 Objekt 6066_h: following_error_time_out

Tritt ein Schleppfehler – länger als in diesem Objekt definiert – auf, dann wird das zugehörige Bit 13 following_error im statusword gesetzt.

Index	6066 _h	VAR_Eintrag
Name	following_error_time_out	
Object Code	VAR	
Data Type	UINT16	

Access	rw	VAR_Eintrag
PDO Mapping	yes	<u></u> ag
Units	ms	
Value Range	027314	
Default Value	0	

6.7.2.9 Objekt 60FA_h: control_effort

Die Ausgangsgröße des Lagereglers kann über dieses Objekt ausgelesen werden. Dieser Wert wird intern dem Drehzahlregler als Sollwert zugeführt.

Index	60FA _h	VAR_Eintrag
Name	control_effort	
Object Code	VAR	
Data Type	INT32	

Access	ro	VAR
PDO Mapping	yes	.,
Units	speed units	
Value Range	-	
Default Value	-	

VAR_Eintrag

6.7.2.10 Objekt 6067_h: position_window

Mit dem Objekt **position_window** wird um die Zielposition (**target_position**) herum ein symmetrischer Bereich definiert. Wenn der Lage-Istwert (**position_actual_value**) eine bestimmte Zeit innerhalb dieses Bereiches liegt, wird die Zielposition (**target_position**) als erreicht angesehen.

Index	6067 _h	VAR_Eintrag
Name	position_window	
Object Code	VAR	
Data Type	UINT32	
-	_	
Access	rw	VAR Eintrag
PDO Mapping	yes	
Units	position units	
Value Range	-	
Default Value	1820 (1820 / 65536 II = 10°)	

6.7.2.11 Objekt 6068_h: position_window_time

Wenn sich die Ist-Position des Antriebes innerhalb des Positionierfensters (position_window) befindet und zwar solange, wie in diesem Objekt definiert, dann wird das zugehörige Bit 10 target_reached im statusword gesetzt.

Index	6068 _h	VAR_Eintrag
Name	position_window_time	
Object Code	VAR	
Data Type	UINT16	
-		- 1
Access	rw	VAR_Eintrag
PDO Mapping	yes	
Units	ms	
Value Range	-	
Default Value	0	

6.7.2.12 Objekt 6510_h_22_h: position_error_switch_off_limit

Im Objekt **position_error_switch_off_limit** kann die maximal zulässige Abweichung zwischen der Soll- und der Istposition eingetragen werden. Im Gegensatz zur o.g. Schleppfehlermeldung wird bei einer Überschreitung die Endstufe sofort abgeschaltet und ein Fehler ausgelöst. Der Motor trudelt somit ungebremst aus (außer es ist eine Haltebremse vorhanden).

Index	6510 _h
Name	drive_data
Object Code	RECORD
No. of Elements	51<- LINK! Nicht hier ändern !!

RECORD_MAIN

Sub-Index	22 _h
Description	position_error_switch_off_limit
Data Type	UINT32
Access	rw
PDO Mapping	no
Units	position units
Value Range	02 ³² -1
Default Value	0

RECORD_Eintrag Ab Firmware 3.2.0.1.

1

Wert	Bedeutung	
0	Grenzwert Schleppfehler AUS	(Reaktion KEINE AKTION)
> 0	Grenzwert Schleppfehler EIN	(Reaktion ENDSTUFE SOFORT ABSCHALTEN)

Die Aktivierung des Fehlers 17-0 erfolgt durch Änderung der Fehlerreaktion. Die Reaktion ENDSTUFE SOFORT ABSCHALTEN wird als **EIN**, alle anderen als **AUS** zurückgegeben. Beim Beschreiben mit 0 wird die Fehlerreaktion KEINE AKTION gesetzt, beim Beschreiben mit einem Wert größer 0 die Fehlerreaktion ENDSTUFE SOFORT ABSCHALTEN. Siehe hierzu auch Kapitel 6.18, Fehlermanagement.

6.7.2.13 Objekt 607B_h: position_range_limit

Die Objektgruppe **position_range_limit** enthät zwei Unterparameter, die den numerischen Bereich der Positionswerte beschränken. Wenn eine dieser Grenzen überschritten wird, springt der Positionsistwert automatisch an die jeweils andere Grenze. Dieses ermöglicht die Parametrierung von sog. Rundachsen. Anzugeben sind die Grenzen, die physikalisch der gleichen Position entsprechen sollen, also beispielsweise 0° und 360°.

Damit diese Grenzen wirksam werden, muss über das Objekt 6510_h_20_h (position_range_limit_enable) ein Rundachsmodus ausgewählt werden.

Index	607B _h
Name	position_range_limit
Object Code	ARRAY
No. of Elements	2
Data Type	INT32

ARRAY_MAIN Ab Firmware 3.3.x.1.

Sub-Index	01 _h
Description	min_position_range_limit
Access	rw
PDO Mapping	yes
Units	position units
Value Range	-
Default Value	-

ARRAY_Eintrag Ab Firmware 3.3.x.1.1

Sub-Index	02 _h
Description	max_position_range_limit
Access	rw
PDO Mapping	yes
Units	position units
Value Range	-
Default Value	-

ARRAY_Eintrag Ab Firmware 3.3.x.1.1

6.7.2.14 Objekt 6510_h_20_h: position_range_limit_enable

Über das Objekt **position_range_limit_enable** können die durch das Objekt **607B**_h definierten Bereichsgrenzen aktiviert werden. Es sind verschiedene Modi möglich:

Wird der Modus "Kürzester Weg" gewählt, werden Positionierungen immer auf der physikalisch kürzeren Strecke zum Ziel ausgeführt. Der Antrieb passt dazu selber das Vorzeichen der Fahrgeschwindigkeit an. Bei den beiden Modi "Feste Drehrichtung" erfolgt die Positionierung grundsätzlich nur in die im Modus angegebene Richtung.

Index	6510 _h
Name	drive_data
Object Code	RECORD
No. of Elements	51<- LINK! Nicht hier ändern !!

RECORD_MAIN

Sub-Index	20 _h
Description	position_range_limit_enable
Data Type	UINT16
Access	rw
PDO Mapping	no
Units	-
Value Range	05
Default Value	0

RECORD_Eintrag Ab Firmware 3.3.x.1.

1

Wert	Bedeutung
0	Aus
1	Kürzester Weg (Aus Kompatibilitätsgründen)
2	Kürzester Weg
3	Reserviert
4	Feste Drehrichtung "Positiv"
5	Feste Drehrichtung "Negativ"

6.7.2.15 Objekt 2030_h: set_position_absolute

Über das Objekt set_position_absolute kann die auslesbare Istposition verschoben werden, ohne dass sich die physikalische Lage ändert. Der Antrieb führt dabei keine Bewegung aus. Wenn ein absolutes Gebersystem angeschlossen ist, wird die Lageverschiebung im Geber gespeichert, sofern das Gebersystem dies zulässt. Die Lageverschiebung bleibt in diesem Fall also nach einem Reset erhalten. Diese Speicheroperation läuft unabhängig von diesem Objekt im Hintergrund ab. Es werden dabei ebenfalls alle dem Geberspeicher zugehörigen Parameter mit ihren aktuellen Werten gespeichert.

Index	2030 _h
Name	set_position_absolute
Object Code	VAR
Data Type	INT32

VAR_Eintrag Ab Firmware 3.5.x.1

.1

Access	wo
PDO Mapping	no
Units	position units
Value Range	-
Default Value	-

VAR_Eintrag

6.8 Sollwert-Begrenzung

6.8.1 Beschreibung der Objekte

6.8.1.1 In diesem Kapitel behandelte Objekte

Index	Objekt	Name	Тур	Attr.
2415 _h	RECORD	current_limitation		rw
2416 _h	RECORD	speed_limitation		rw

6.8.1.2 Objekt 2415_h: current_limitation

Mit der Objektgruppe **current_limitation** kann in den Betriebsarten profile_position_mode, interpolated_position_mode, homing_mode und velocity_mode der Maximalstrom für den Motor begrenzt werden, wodurch z.B. ein drehmomentbegrenzter Drehzahlbetrieb ermöglicht wird. Über das Objekt **limit_current_input_channel** wird die Sollwert-Quelle des Begrenzungsmoment vorgegeben. Hier kann zwischen der Vorgabe eines direkten Sollwerts (Fester Wert) oder der Vorgabe über einen analogen Eingang gewählt werden. Über das Objekt **limit_current** wird je nach gewählter Quelle entweder das Begrenzungsmoment (Quelle = Fester Wert) oder der Skalierungsfaktor für die Analogeingänge (Quelle = Analogeingang) vorgegeben. Im ersten Fall wird direkt auf den momentproportionalen Strom in mA begrenzt, im zweiten Fall wird der Strom in mA angegeben, der einer anliegenden Spannung von 10V entsprechen soll.

Index	2415 _h	RECORD_MAIN
Name	current_limitation	
Object Code	RECORD	
No. of Elements	2	

Sub-Index	01 _h
Description	limit_current_input_channel
Data Type	UINT8
Access	rw
PDO Mapping	no
Units	-
Value Range	04
Default Value	0

RECORD_Eintrag

Sub-Index	02 _h
Description	limit_current
Data Type	INT32
Access	rw
PDO Mapping	no
Units	mA
Value Range	-
Default Value	0

RECORD_Eintrag

Wert	Bedeutung
0	Keine Begrenzung
1	AINO
2	AIN1
3	AIN2
4	Feldbus (Feldbus-Selektor 2)

6.8.1.3 Objekt 2416_h: speed_limitation

Mit der Objektgruppe **speed_limitation** kann in der Betriebsart profile_torque_mode die Maximaldrehzahl des Motors begrenzt werden, wodurch ein drehzahlbegrenzter Drehmomentbetrieb ermöglicht wird. Über das Objekt **limit_speed_input_channel** wird die Sollwert-Quelle der Begrenzungsdrehzahl vorgegeben. Hier kann zwischen der Vorgabe eines direkten Sollwerts (Fester Wert) oder der Vorgabe über einen analogen Eingang gewählt werden. Über das Objekt **limit_speed** wird je nach gewählter Quelle entweder die Begrenzungsdrehzahl (Quelle = Fester Wert) oder der Skalierungsfaktor für die Analogeingänge (Quelle = Analogeingang) vorgegeben. Im ersten Fall wird direkt auf die angegebene Drehzahl begrenzt, im zweiten Fall wird die Drehzahl angegeben, die einer anliegenden Spannung von 10V entsprechen soll.

Index	2416 _h
Name	speed_limitation
Object Code	RECORD
No. of Elements	2

RECORD_MAINAb Firmware

3.3.0.1.

1

 Sub-Index
 01h

 Description
 limit_speed_input_channel

 Data Type
 UINT8

 Access
 rw

 PDO Mapping
 no

 Units

 Value Range
 0...4

 Default Value
 0

RECORD_EintragAb Firmware

3.3.0.1.

1

Sub-Index	02 _h	
Description	limit_speed	
Data Type	INT32	
Access	rw	
PDO Mapping	no	
Units	speed units	
Value Range	-	
Default Value	-	

RECORD_EintragAb Firmware

3.3.0.1.

1

Wert Bedeutung

0	Keine Begrenzung
1	AINO
2	AIN1
3	AIN2
4	Feldbus (Feldbus-Selektor 2)

6.9 Geberanpassungen

6.9.1 Übersicht

Dieses Kapitel beschreibt die Konfiguration des Winkelgebereingangs X2A, X2B und des Inkrementaleingangs X10.

Vorsicht!

Falsche Winkelgeber-Einstellungen können den Antrieb unkontrolliert drehen lassen und eventuell Teile der Anlage zerstören.

6.9.2 Beschreibung der Objekte

6.9.2.1 In diesem Kapitel behandelte Objekte

Index	Objekt	Name	Тур	Attr.
2024 _h	RECORD	encoder_x2a_data_field		ro
2024 _h _01 _h	VAR	encoder_x2a_resolution	UINT32	ro
2024 _h _02 _h	VAR	encoder_x2a_numerator	INT16	rw
2024 _h _03 _h	VAR	encoder_x2a_divisor	INT16	rw
2025 _h	RECORD	encoder_x10_data_field		ro
2025 _h _01 _h	VAR	encoder_x10_resolution	UINT32	rw
2025 _h _02 _h	VAR	encoder_x10_numerator	INT16	rw
2025 _h _03 _h	VAR	encoder_x10_divisor	INT16	rw
2025 _h _04 _h	VAR	encoder_x10_counter	UINT32	ro
2026 _h	RECORD	encoder_x2b_data_field		ro
2026 _h _01 _h	VAR	encoder_x2b_resolution	UINT32	rw
2026 _h _02 _h	VAR	encoder_x2b_numerator	INT16	rw
2026 _h _03 _h	VAR	encoder_x2b_divisor	INT16	rw
2026 _h _04 _h	VAR	encoder_x2b_counter	UINT32	ro

6.9.2.2 Objekt 2024_h: encoder_x2a_data_field

Im Record **encoder_x2a_data_field** sind Parameter zusammengefasst, die für den Betrieb des Winkelgebers am Stecker X2A notwendig sind.

Da zahlreiche Winkelgeber- Einstellungen nur nach einem Reset wirksam werden, sollte die Auswahl und die Einstellung der Geber über den item Motion Soft™ erfolgen. Unter CANopen lassen sich folgende Einstellungen auslesen bzw. ändern:

Das Objekt encoder_x2a_resolution gibt an, wie viele Inkremente vom Geber pro Umdrehung oder Längeneinheit erzeugt werden. Da am Eingang X2A nur Resolver angeschlossen werden können, die immer mit 16 Bit ausgewertet werden, wird hier immer 65536 zurückgegeben. Mit dem Objekt encoder_x2a_numerator und encoder_x2a_divisor kann ein eventuelles Getriebe (auch mit Vorzeichen) zwischen Motorwelle und Geber berücksichtigt werden.

Index	2024 _h
Name	encoder_x2a_data_field
Object Code	RECORD
No. of Elements	3

RECORD_MAIN Ab Firmware 3.2.0.1.

Sub-Index O1h

Description encoder_x2a_resolution

Data Type UINT32

Access ro

PDO Mapping No

Units Inkremente (4 * Strichzahl)

Value Range
Default Value 65536

RECORD_Eintrag Ab Firmware 3.2.0.1.

RECORD_Eintrag Ab Firmware

3.2.0.1.

Sub-Index	02 _h
Description	encoder_x2a_numerator
Data Type	INT16
Access	rw
PDO Mapping	no
Units	-
Value Range	-32768 32767 (außer 0)
Default Value	1

RECORD_Eintrag Ab Firmware 3.2.0.1.

Sub-Index	03 _h
Description	encoder_x2a_divisor
Data Type	INT16
Access	rw
PDO Mapping	no
Units	-
Value Range	1 32767
Default Value	1

6.9.2.3 Objekt 2026_h: encoder_x2b_data_field

Im Record **encoder_x2b_data_field** sind Parameter zusammengefasst, die für den Betrieb des Winkelgebers am Stecker X2B notwendig sind.

Das Objekt **encoder_x2b_resolution** gibt an, wie viele Inkremente vom Geber pro Umdrehung erzeugt werden (Bei Inkrementalgebern entspricht dies dem vierfachen der Strichzahl bzw der Perioden pro Umdrehung).

Das Objekt encoder_x2b_counter liefert die aktuell gezählte Inkrementzahl. Es liefert daher Werte zwischen 0 und der eingestellten Inkrementzahl-1. Mit den Objekten encoder_x2b_numerator und encoder_x2b_divisor kann ein Getriebe zwischen Motorwelle und dem an X2b angeschlossenen Geber berücksichtigt werden.

Index	2026 _h
Name	encoder_x2b_data_field
Object Code	RECORD
No. of Elements	4

RECORD_MAIN Ab Firmware 3.2.0.1.

1

Sub-Index 01_h encoder_x2b_resolution Description UINT32 Data Type Access rw PDO Mapping no Units Inkremente (4 * Strichzahl) hängt vom benutzten Geber ab Value Range Default Value hängt vom benutzten Geber ab

RECORD_Eintrag Ab Firmware 3.2.0.1.

1

Sub-Index	02 _h
Description	encoder_x2b_numerator
Data Type	INT16
Access	rw
PDO Mapping	no
Units	-
Value Range	-32768 32767
Default Value	1

RECORD_Eintrag Ab Firmware 3.3.0.1.

1

Sub-Index	03 _h
Description	encoder_x2b_divisor
Data Type	INT16
Access	rw
PDO Mapping	no
Units	-
Value Range	1 32767
Default Value	1

RECORD_Eintrag Ab Firmware
3.3.0.1.
1

Sub-Index	04 _h
Description	encoder_x2b_counter
Data Type	UINT32
Access	ro
PDO Mapping	yes
Units	Inkremente (4 * Strichzahl)
Value Range	0 (encoder_x2b_resolution - 1)
Default Value	-

RECORD_Eintrag Ab Firmware 3.2.0.1.

6.9.2.4 Objekt 2025_h: encoder_x10_data_field

Im Record **encoder_X10_data_field** sind Parameter zusammengefasst, die für den Betrieb des Inkrementaleingangs X10 notwendig sind. Hier kann wahlweise ein digitaler Inkrementalgeber oder emulierte Inkrementalsignale beispielsweise eines anderen item C Serie angeschlossen werden. Die Eingangssignale über X10 können wahlweise als Sollwert oder als Iswert verwendet werden. Näheres hierzu finden Sie in Kapitel 6.11

Im Objekt **encoder_X10_resolution** muss angegeben werden, wie viele Inkremente vom Geber pro Umdrehung des Gebers erzeugt werden. Dies entspricht dem vierfachen der Strichzahl. Das Objekt **encoder_X10_counter** liefert die aktuell gezählte Inkrementzahl (Zwischen 0 und der eingestellten Inkrementzahl-1).

Mit dem Objekt **encoder_X10_numerator** und **encoder_X10_divisor** kann ein eventuelles Getriebe (auch mit Vorzeichen) berücksichtigt werden.

Bei der Verwendung des X10- Signals als Istwert entspräche dies einem Getriebe zwischen dem Motor und dem an X10 angeschlossenen Istwertgeber, welches am Abtrieb montiert ist. Bei der Verwendung des X10- Signals als Sollwert, können hiermit Getriebeübersetzungen zwischen Master und Slave realisiert werden.

Index	2025 _h
Name	encoder_x10_data_field
Object Code	RECORD
No. of Elements	4

RECORD_MAIN Ab Firmware 3.2.0.1.

1

Sub-Index	01 _h
Description	encoder_x10_resolution
Data Type	UINT32
Access	rw
PDO Mapping	no
Units	Inkremente (4 * Strichzahl)
Value Range	hängt vom benutzten Geber ab
Default Value	hängt vom benutzten Geber ab

RECORD_Eintrag Ab Firmware 3.2.0.1.

1

Sub-Index	02 _h
Description	encoder_x10_numerator
Data Type	INT16
Access	rw
PDO Mapping	no
Units	-
Value Range	-32768 32767 (außer 0)
Default Value	1

RECORD_Eintrag Ab Firmware 3.2.0.1.

1

Sub-Index	03 _h
Description	encoder_x10_divisor
Data Type	INT16
Access	rw
PDO Mapping	no
Units	-
Value Range	1 32767
Default Value	1

RECORD_Eintrag Ab Firmware 3.2.0.1.

1

Sub-Index	04 _h
Description	encoder_x10_counter
Data Type	UINT32
Access	ro
PDO Mapping	yes
Units	Inkremente (4 * Strichzahl)
Value Range	0 (encoder_x10_resolution - 1)
Default Value	-

RECORD_Eintrag Ab Firmware 3.2.0.1.

6.10 Inkrementalgeberemulation

6.10.1 Übersicht

Diese Objekt- Gruppe ermöglicht es, den Inkrementalgeberausgang X11 zu parametrieren. Somit können Master- Slave- Applikationen, bei denen der X11 Ausgang des Masters an den X10- Eingang des Slave angeschlossen ist, hiermit unter CANopen parametriert werden.

6.10.2 Beschreibung der Objekte

6.10.2.1 In diesem Kapitel behandelte Objekte

Index	Objekt	Name	Тур	Attr.
2028 _h	VAR	encoder_emulation_resolution	INT32	rw
201A _h	RECORD	encoder_emulation_data		ro
201A _h _01 _h	VAR	encoder_emulation_resolution	INT32	rw
201A _h _02 _h	VAR	encoder_emulation_offset	INT16	rw

6.10.2.2 Objekt 201A_h: encoder_emulation_data

Der Object- Record **encoder_emulation_data** kapselt alle Einstellmöglichkeiten für den Inkrementalgeberausgang X11:

Über das Objekt **encoder_emulation_resolution** kann die ausgegebene Inkrementzahl (= vierfache Strichzahl) als Vielfaches von 4 frei eingestellt werden. In einer Master- Slave- Applikation muss diese der **encoder_X10_resolution** des Slave entsprechen, um ein Verhältnis von 1:1 zu erreichen.

Mit dem Objekt **encoder_emulation_offset** kann die Position des ausgegebenen Nullimpulses gegenüber der Nulllage des Istwertgebers verschoben werden.

Index	201A _h
Name	encoder_emulation_data
Object Code	RECORD
No. of Elements	2

RECORD_MAIN Ab Firmware 3.2.0.1.

Sub-Index	01 _h
Description	encoder_emulation_resolution
Data Type	INT32
Access	rw
PDO Mapping	no
Units	Inkremente (4 * Strichzahl)
Value Range	4 * (18192)
Default Value	4096

RECORD_Eintrag Ab Firmware 3.2.0.1.

Sub-Index	02 _h
Description	encoder_emulation_offset
Data Type	INT16
Access	rw
PDO Mapping	no
Units	32767 = 180°
Value Range	-3276832767
Default Value	0

RECORD_Eintrag Ab Firmware 3.2.0.1.

6.10.2.3 Objekt 2028_h: encoder_emulation_resolution

Das Objekt encoder_emulation_resolution ist nur aus Kompatibiltätsgründen vorhanden. Es entspricht dem Objekt 201Ah_01h.

Index	2028 _h
Name	encoder_emulation_resolution
Object Code	VAR
Data Type	INT32

VAR_Eintrag Ab Firmware 3.2.0.

Access	rw
PDO Mapping	no
Units	siehe 201A _h _01 _h
Value Range	siehe 201A _h _01 _h
Default Value	siehe 201A _h _01 _h

VAR_Eintrag

6.11 Soll-/Istwertaufschaltung

6.11.1 Übersicht

Mit Hilfe der nachfolgenden Objekte kann die Quelle für den Sollwert und die Quelle für den Istwert geändert werden. Als Standard verwendet der Regler den Eingang für den Motorgeber X2A bzw. X2B als Istwert für den Lageregler. Bei Verwendung eines externen Lagegebers, z.B. hinter einem Getriebe, kann der über X10 eingespeiste Lagewert als Istwert für den Lageregler aufgeschaltet werden. Darüber hinaus ist es möglich über X10 eingehende Signale (z.B. eines zweiten Reglers) als zusätzlichen Sollwert aufzuschalten, wodurch Synchronbetriebsarten ermöglicht werden.

6.11.2 Beschreibung der Objekte

6.11.2.1 In diesem Kapitel behandelte Objekte

Index	Objekt	Name	Тур	Attr.
201F _h	VAR	commutation_encoder_select	INT16	rw
2021 _h	VAR	position_encoder_selection	INT16	rw
2022 _h	VAR	synchronisation_encoder_selection	INT16	rw
2023 _h	VAR	synchronisation_filter_time	UINT32	rw
202F _h	RECORD	synchronisation_selector_data		ro
202F _h _07 _h	VAR	synchronisation_main	UINT16	rw

6.11.2.2 Objekt 201F_h: commutation_encoder_select

Das Objekt commutation_encoder_select gibt den Gebereingang an, der als Kommutiergeber verwendet wird. Da dieser Wert erst nach einem Reset wirksam wird, sollte die Einstellung des Kommutiergebers grundsätzlich über den item Motion Soft™ erfolgen.

Index	201F _h
Name	commutation_encoder_select
Object Code	VAR
Data Type	INT16

VAR_Eintrag Ab Firmware 3.2.0.

Access	rw
PDO Mapping	no
Units	-
Value Range	0, 2 (siehe Tabelle)
Default Value	0

VAR_Eintrag

Wert	Bezeichnung
0	X2A
2	X2B

6.11.2.3 Objekt 2021_h: position_encoder_selection

Das Objekt **position_encoder_selection** gibt den Gebereingang an, der zur Bestimmung der Istlage (Istwertgeber) verwendet wird. Dieser Wert kann geändert werden, um auf Lageregelung über einen externen (am Abtrieb angeschlossenen) Geber umzuschalten. Dabei kann zwischen X10 und dem als Kommutiergeber ausgewählten Gebereingang (X2A / X2B) umgeschaltet werden. Wird einer der Gebereingänge X2A / X2B als Lageistwertgeber ausgewählt, so muss derjenige verwendet werden, der als Kommutiergeber genutzt wird. Wird der jeweils andere Geber angewählt, wird automatisch auf den Kommutiergeber umgeschaltet.

Index	2021 _h
Name	position_encoder_selection
Object Code	VAR
Data Type	INT16

VAR_Eintrag Ab Firmware 3.2.0.

1.1

Access	rw
PDO Mapping	no
Units	-
Value Range	02 (siehe Tabelle)
Default Value	0

VAR_Eintrag

Wert	Bezeichnung
0	X2A
1	X2B
2	X10

Es kann nur zwischen dem Gebereingang X10 und dem jeweiligen Kommutiergeber X2A oder X2B als Lageistwertgeber gewählt werden. Die Konfiguration X2A als Kommutiergeber und X2B als Lageistwertgeber zu nutzen, bzw. umgekehrt, ist nicht möglich.

6.11.2.4 Objekt 2022_h: synchronisation_encoder_selection

Das Objekt **synchronisation_encoder_selection** gibt den Gebereingang an, der als Synchronisationssollwert verwendet wird. Je nach Betriebsart entspricht dieses einem Lagesollwert (Profile Position Mode) oder einem Drehzahlsollwert (Profile Velocity Mode).

Als Synchronisationseingang kann nur X10 verwendet werden. Somit kann zwischen X10 und keinem Eingang ausgewählt werden. Als Synchronisationssollwert sollte nicht der gleiche Eingang wie für den Istwertgeber gewählt werden.

Index	2022 _h
Name	synchronisation_encoder_selection
Object Code	VAR
Data Type	INT16

VAR_Eintrag Ab Firmware 3.2.0.

Access	rw	V
PDO Mapping	no	ľ
Units	-	
Value Range	-1, 2 (siehe Tabelle)	
Default Value	2	

VAR_Eintrag

Wert	Bezeichnung
-1	kein Geber / undefiniert
2	X10

6.11.2.5 Objekt 202F_h: synchronisation_selector_data

Über das Objekt **synchronisation_main** kann die Aufschaltung eines Synchronsollwerts erfolgen. Damit der Synchronsollwert überhaupt berechnet wird, muss Bit 0 gesetzt werden. Bit 1 ermöglicht es in zukünftigen Firmware- Versionen die Synchronlage erst durch das Starten eines Positionssatzes aufzuschalten. Zur Zeit ist nur 0 parametrierbar, so dass die Synchronlage immer zugeschaltet ist. Über das Bit 8 kann festgelegt werden, dass die Referenzfahrt ohne Aufschaltung der Synchronlage erfolgen soll, um Master und Slave getrennt referenzieren zu können.

Index	202F _h
Name	synchronisation_selector_data
Object Code	RECORD
No. of Elements	1

RECORD_MAIN Ab Firmware 3.2.0.1.

1

Sub-Index	07 _h
Description	synchronisation_main
Data Type	UINT16
Access	rw
PDO Mapping	no
Units	-
Value Range	siehe Tabelle
Default Value	-

RECORD_Eintrag Ab Firmware 3.2.0.1.

Bit	Wert	Bedeutung
0	0001 _h	0: Synchronisation inaktiv
		1: Synchronisation aktiv
1	0002_{h}	"Fliegende Säge" nicht möglich
8	0100 _h	0: Synchronisation während der Referenzfahrt
		1: Keine Synchronisation während der Referenzfahrt

6.11.2.6 Objekt 2023_h: synchronisation_filter_time

Über das Objekt synchronisation_filter_time wird die Filterzeitkonstante eines PT1- Filters festgelegt, mit dem die Synchronisationsdrehzahl geglättet wird. Dies kann insbesondere bei geringen Strichzahlen nötig sein, da hier bereits kleine Änderungen des Eingangswertes hohen Drehzahlen entsprechend. Andererseits ist der Antrieb bei hohen Filterzeiten ggf. nicht mehr in der Lage schnell genug einem dynamischen Eingangssignal zu folgen.

Index	2023 _h
Name	synchronisation_filter_time
Object Code	VAR
Data Type	UINT32

VAR_Eintrag Ab Firmware 3.2.0.

Access	rw	l.
PDO Mapping	no	
Units	μs	
Value Range	1050 000	
Default Value	600	Ī

VAR_Eintrag

6.12 Analoge Eingänge

6.12.1 Übersicht

Die Antriebsregler der item Servo Positioning Controller C Serie verfügen über drei analoge Eingänge, über die dem Regler beispielsweise Sollwerte vorgegeben werden können. Für alle diese analogen Eingänge bieten die nachfolgenden Objekte die Möglichkeit, die aktuelle Eingangsspannung auszulesen (analog_input_voltage) und einen Offset einzustellen (analog_input_offset).

6.12.2 Beschreibung der Objekte

Index	Objekt	Name	Тур	Attr.
2400 _h	ARRAY	analog_input_voltage	INT16	ro
2401 _h	ARRAY	analog_input_offset	INT32	rw

6.12.2.1 2400_h: analog_input_voltage (Eingangsspannung)

Die Objektgruppe analog_input_voltage liefert die aktuelle Eingangsspannung des jeweiligen Kanals unter Berücksichtigung des Offsets in Millivolt.

Index	2400 _h	ARRAY_N
Name	analog_input_voltage	
Object Code	ARRAY	
No. of Elements	3	
Data Type	INT16	

MAIN

Sub-Index	01 _h
Description	analog_input_voltage_ch_0
Access	ro
PDO Mapping	no
Units	mV
Value Range	-
Default Value	-

ARRAY_Eintrag

Sub-Index	02 _h	ARRAY_Eintrag
Description	analog_input_voltage_ch_1	
Access	ro	
PDO Mapping	no	
Units	mV	
Value Range	7	
Default Value	-	

Sub-Index	03 _h
Description	analog_input_voltage_ch_2
Access	ro
PDO Mapping	no
Units	mV
Value Range	-
Default Value	-

ARRAY_Eintrag

6.12.2.2 Objekt 2401_h: analog_input_offset (Offset Analogeingänge)

Über die Objektgruppe analog_input_offset kann die Offsetspannung in Millivolt für die jeweiligen Eingänge gesetzt bzw. gelesen werden. Mit Hilfe des Offsets kann eine eventuelle anliegende Gleichspannung ausgeglichen werden. Ein positiver Offset kompensiert dabei eine positive Eingangsspannung.

Index	2401 _h	ARRAY_MAIN
Name	analog_input_offset	
Object Code	ARRAY	
No. of Elements	3	
Data Type	INT32	

Sub-Index	01 _h
Description	analog_input_offset_ch_0
Access	rw
PDO Mapping	no
Units	mV
Value Range	-1000010000
Default Value	0

ARRAY_Eintrag

Sub-Index	02 _h
Description	analog_input_offset_ch_1
Access	rw
PDO Mapping	no
Units	mV
Value Range	-1000010000
Default Value	0

ARRAY_Eintrag

Sub-Index	03 _h
Description	analog_input_offset_ch_2
Access	rw
PDO Mapping	no
Units	mV
Value Range	-1000010000
Default Value	0

ARRAY_Eintrag

6.13 Digitale Ein- und Ausgänge

6.13.1 Übersicht

Alle digitalen Eingänge des Reglers können über den CAN-Bus gelesen und fast alle digitalen Ausgänge können beliebig gesetzt werden. Zudem können den digtalen Ausgängen des Reglers Statusmeldungen zugeordnet werden.

6.13.2 Beschreibung der Objekte

6.13.2.1 In diesem Kapitel behandelte Objekte

Index	Objekt	Name	Тур	Attr.
60FD _h	VAR	digital_inputs	UINT32	ro
60FE _h	ARRAY	digital_outputs	UINT32	rw
2420 _h	RECORD	digital_output_state_mapping		ro
2420 _h _01 _h	VAR	dig_out_state_mapp_dout_1	UINT8	rw
2420 _h _02 _h	VAR	dig_out_state_mapp_dout_2	UINT8	rw
2420 _h _03 _h	VAR	dig_out_state_mapp_dout_3	UINT8	rw
2420 _h _11 _h	VAR	dig_out_state_mapp_ea88_0_low	UINT32	rw
2420 _h _12 _h	VAR	dig_out_state_mapp_ea88_0_high	UINT32	rw

6.13.2.2 Objekt 60FD_h: digital_inputs

Über das Objekt 60FD_h können die digitalen Eingänge ausgelesen werden:

Index	60FD _h	VAR_Eintrag
Name	digital_inputs	
Object Code	VAR	
Data Type	UINT32	

Access	ro	VAR_Eintrag
PDO Mapping	yes	., <u></u> ag
Units	-	
Value Range	gemäß u. Tabelle	
Default Value	0	

Bit	Wert	digitaler Eingang
0	0000001 _h	Negativer Endschalter
1	00000002h	Positiver Endschalter
2	00000004 _h	Referenzschalter
3	00000008 _h	Interlock (Regler- oder Endstufenfreigabe fehlt)
1623	00FF0000 _h	Gegebenenfalls zusätzliche digitale Eingänge eines EA88-Moduls (EA88-0)
2427	0F000000 _h	DINODIN3
28	10000000 _h	DIN8
29	20000000 _h	DIN9

6.13.2.3 Objekt 60FE_h: digital_outputs

Über das Objekt 60FE_h können die digitalen Ausgänge angesteuert werden. Hierzu ist im Objekt digital_outputs_mask anzugeben, welche der digitalen Ausgänge angesteuert werden sollen. Über das Objekt digital_outputs_data können die ausgewählten Ausgänge dann beliebig gesetzt werden. Es ist zu beachten, dass bei der Ansteuerung der digitalen Ausgänge eine Verzögerung von bis zu 10 ms auftreten kann. Wann die Ausgänge wirklich gesetzt werden, kann durch Zurücklesen des Objekts 60FE_h festgestellt werden.

Index	60FE _h	ARRAY_MAIN
Name	digital_outputs	
Object Code	ARRAY	
No. of Elements	2	
Data Type	UINT32	

Sub-Index	01 _h
Description	digital_outputs_data
Access	rw
PDO Mapping	yes
Units	-
Value Range	-
Default Value	(abhängig vom Zustand der Bremse)

Sub-Index	02 _h
Description	digital_outputs_mask
Access	rw
PDO Mapping	yes
Units	-
Value Range	-
Default Value	00000000 _h

ARRAY_Eintrag

ARRAY_Eintrag

Bit	Wert	Digitaler Ausgang
0	0000001 _h	1 = Bremse anziehen
2527	0E000000 _h	DOUT1DOUT3

Wenn die Bremsansteuerung über digital_output_mask freigegeben ist, wird durch Löschen von Bit 0 in digital_output_data die Haltebremse manuell gelüftet!

Dies kann bei hängenden Achsen zu einem Absacken der Achse führen.

6.13.2.4 Objekt 2420_h: digital_output_state_mapping

Über die Objektgruppe **digital_outputs_state_mapping** können verschiedene Statusmeldungen des Reglers über die digitalen Ausgänge ausgegeben werden.

Für die integrierten digitalen Ausgänge des Reglers ist hierzu für jeden Ausgang ein eigener Subindex vorhanden. Somit ist für jeden Ausgang ein Byte vorhanden, in das die Funktionsnummer einzutragen ist.

Wenn einem digitalen Ausgang eine derartige Funktion zugeordnet wurde und der Ausgang dann direkt über **digital_outputs** (60FE_h) ein- oder ausgeschaltet wird, wird auch das Objekt **digital_outputs_state_mapping** auf AUS (0) bzw. EIN (12) gesetzt.

Index	2420 _h
Name	digital_outputs_state_mapping
Object Code	RECORD
No. of Elements	5

RECORD_MAIN Ab Firmware 3.2.0.1.

1

Sub-Index	01 _h
Description	dig_out_state_mapp_dout_1
Data Type	UINT8
Access	rw
PDO Mapping	no
Units	-
Value Range	0 16, siehe Tabelle
Default Value	0

 $\label{eq:RECORD_Eintrag} \mbox{ Ab Firmware } \\ 3.2.0.1.$

1

Sub-Index	02 _h
Description	dig_out_state_mapp_dout_2
Data Type	UINT8
Access	rw
PDO Mapping	no
Units	-
Value Range	0 16, siehe Tabelle
Default Value	0

RECORD_Eintrag Ab Firmware 3.2.0.1.

.

Sub-Index	03 _h
Description	dig_out_state_mapp_dout_3
Data Type	UINT8
Access	rw
PDO Mapping	no
Units	-
Value Range	0 16, siehe Tabelle
Default Value	0

RECORD_Eintrag Ab Firmware 3.2.0.1.

1

Wert	Bezeichnung	Wert	Bezeichnung
0	Aus (Ausgang ist Low)	9	Unterspannung Zwischenkreis
1	Position $X_{soll} = X_{ziel}$	10	Feststellbremse gelüftet
2	Position X _{ist} = X _{ziel}	11	Endstufe aktiv
3	Reserviert	12	Ein (Ausgang ist High)
4	Restweg	13	Reserviert
5	Referenzfahrt aktiv	14	Reserviert
6	Vergleichsdrehzahl erreicht	15	Linearmotor identifiziert
7	I ² t-Überwachung aktiv	16	Referenzposition gültig
8	Schleppfehler		

6.14 Endschalter / Referenzschalter

6.14.1 Übersicht

Für die Definition der Referenzposition des Antriebreglers können wahlweise Endschalter (limit switch) oder Referenzschalter (homing switch) verwendet werden. Nähere Informationen zu den möglichen Referenzfahrt-Methoden finden sie im Kapitel *8.2, Betriebsart Referenzfahrt (Homing Mode).*

6.14.2 Beschreibung der Objekte

Index	Objekt	Name	Тур	Attr.
6510 _h	RECORD	drive_data		rw

6.14.2.1 Objekt 6510_h_11_h: limit_switch_polarity

Die Polarität der Endschalter kann durch das Objekt 6510_h_11_h (limit_switch_polarity) programmiert werden. Für öffnende Endschalter ist in dieses Objekt eine Null, bei der Verwendung von schließenden Kontakten ist eine Eins einzutragen.

Index	6510 _h	RECORD_MAIN
Name	drive_data	
Object Code	RECORD	
No. of Elements	51<- LINK! Nicht hier ändern !!	

RECORD_	_Eintrag
	_

Sub-Index	11 _h
Description	limit_switch_polarity
Data Type	INT16
Access	rw
PDO Mapping	no
Units	-
Value Range	0, 1
Default Value	1

0	Öffner
1	Schließer

6.14.2.2 Objekt 6510_h_12_h: limit_switch_selector

Über das Objekt 6510_h_12_h (limit_switch_selector) kann die Zuordnung der Endschalter (negativ, positiv) vertauscht werden, ohne Änderungen an der Verkabelung vornehmen zu müssen. Um die Zuordnung der Endschalter zu tauschen, ist eine Eins einzutragen.

Sub-Index	12 _h
Description	limit_switch_selector
Data Type	INT16
Access	rw
PDO Mapping	no
Units	-
Value Range	0, 1
Default Value	0

 $\label{eq:RECORD_Eintrag} \mbox{ Ab Firmware } \\ 3.5.x.1.$

1

Wert	Bedeutung
0	DIN6 = E0 (Endschalter negativ) DIN7 = E1 (Endschalter positiv)
1	DIN6 = E1 (Endschalter positiv) DIN7 = E0 (Endschalter negativ)

6.14.2.3 Objekt 6510_h_14_h: homing_switch_polarity

Die Polarität des Referenzschalters kann durch das Objekt 6510_h_14_h (homing_switch_polarity) programmiert werden. Für einen öffnenden Referenzschalter ist in dieses Objekt eine Null, bei der Verwendung von schließenden Kontakten ist eine Eins einzutragen.

Sub-Index	14 _h
Description	homing_switch_polarity
Data Type	INT16
Access	rw
PDO Mapping	no
Units	-
Value Range	0, 1
Default Value	1

Wert	Bedeutung
0	Öffner
1	Schließer

6.14.2.4 Objekt 6510_h_13_h: homing_switch_selector

Das Objekt 6510_{h} _13_h (homing_switch_selector) legt fest, ob DIN8 oder DIN9 als Referenzschalter verwendet werden soll.

Sub-Index	13 _h
Description	homing_switch_selector
Data Type	INT16
Access	rw
PDO Mapping	no
Units	-
Value Range	0, 1
Default Value	0

RECORD_Eintrag

Wert	Bedeutung
0	DIN9
1	DIN8

6.14.2.5 Objekt 6510_h_15_h: limit_switch_deceleration

Das Objekt **limit_switch_deceleration** legt die Beschleunigung fest, mit der gebremst wird, wenn während des normalen Betriebs der Endschalter erreicht wird (Endschalter-Nothalt-Rampe).

Sub-Index	15 _h
Description	limit_switch_deceleration
Data Type	INT32
Access	rw
PDO Mapping	no
Units	acceleration units
Value Range	03000000 min ⁻¹ /s
Default Value	2000000 min ⁻¹ /s

6.15 Sampling von Positionen

6.15.1 Übersicht

Die item Servo Positioning Controller C Serie bietet die Möglichkeit den Lageistwert auf der steigenden oder fallenden Flanke eines digitalen Eingangs hin abzuspeichern. Dieser Lagewert kann dann z.B. zur Berechnung innerhalb einer Steuerung ausgelesen werden.

Alle notwendigen Objekte sind in dem Record sample_data zusammengefasst: Das Objekt sample_mode legt die Art des Samplings fest: Soll nur ein einmaliges Sample- Ereignis aufgezeichnet werden oder soll kontinuierlich gesampelt werden? Über das Objekt sample_status kann die Steuerung abfragen, ob ein Sample- Ereignis aufgetreten ist. Dies wird durch ein gesetztes Bit signalisiert, welches ebenfalls im statusword angezeigt werden kann, wenn das Objekt sample_status_mask entsprechend gesetzt ist.

Das Objekt sample_control dient dazu, die Freigabe des Sample- Ereignisses zu steuern und letztlich können über die Objekte sample_position_rising_edge und sample_position_falling_edge die gesampelten Positionen ausgelesen werden.

Welcher digitale Eingang verwendet wird, lässt sich mit der item Motion Soft™ unter Parameter / IOs / Digitale Eingänge / Sample- Eingang festlegen.

6.15.2 Beschreibung der Objekte

6.15.2.1 In diesem Kapitel behandelte Objekte

Index	Objekt	Name	Тур	Attr.
204A _h	RECORD	sample_data		ro
204A _h _01 _h	VAR	sample_mode	UINT16	rw
204A _h _02	VAR	sample_status	UINT8	ro
204A _h _03 _h	VAR	sample_status_mask	UINT8	rw
204A _h _04 _h	VAR	sample_control	UINT8	WO
204A _h _05 _h	VAR	sample_position_rising_edge	INT32	ro
204A _h _06 _h	VAR	sample_position_falling_edge	INT32	ro

6.15.2.2 Objekt 204A_h: sample_data

Index	204A _h
Name	sample_data
Object Code	RECORD
No. of Elements	6

RECORD_MAIN Ab Firmware 3.2.0.1.

Mit dem folgenden Objekt kann gewählt werden, ob auf jedes Auftreten eines Sample- Events die Position bestimmt werden soll (Kontinuierliches Sampling) oder ob das Sampling nach einem Sample- Ereignis gesperrt werden soll, bis das Sampling erneut freigegeben wird. Beachten Sie hierbei, dass auch bereits ein Prellen beide Flanken auslösen kann!

Sub-Index	01 _h
Description	sample_mode
Data Type	UINT16
Access	rw
PDO Mapping	no
Units	-
Value Range	0 1, siehe Tabelle
Default Value	0

 $\label{eq:RECORD_Eintrag} \mbox{Ab Firmware} \\ 3.2.0.1.$

1

Wert	Bezeichnung
0	Kontinuierliches Sampling
1	Autolock sampling

Das folgenden Objekt zeigt ein neues Sample- Ereignis an.

Sub-Index	02 _h
Description	sample_status
Data Type	UINT8
Access	ro
PDO Mapping	yes
Units	-
Value Range	0 3, siehe Tabelle
Default Value	0

RECORD_Eintrag Ab Firmware 3.2.0.1.

Bit	Wert	Name	Beschreibung	
0	01 _h	falling_edge_occurred	= 1: Neue Sample-Position (fallende Flanke)	
1	02 _h	rising_edge_occurred	= 1 Neue Sample- Position (steigende Flanke)	

Mit dem folgenden Objekt können die Bits des Objekts **sample_status** festgelegt werden, die auch zum Setzen von Bit 15 des **statusword** führen sollen. Dadurch ist im üblicherweise ohnehin zu übertragenden **statusword** die Information "Sample- Ereignis aufgetreten" vorhanden, so dass die Steuerung nur in diesem Fall das Objekt **sample_status** lesen muss, um ggf. festzustellen welche Flanke aufgetreten ist.

Sub-Index	03 _h
Description	sample_status_mask
Data Type	UINT8
Access	rw
PDO Mapping	yes
Units	-
Value Range	0 3, siehe Tabelle
Default Value	0

RECORD_Eintrag Ab Firmware 3.2.0.1.

Bit	Wert	Name	Beschreibung	
0	01 _h	falling_edge_visible	Wenn falling_edge_occured	= 1 => Statuswort Bit 15 = 1
1	02 _h	rising_edge_visible	Wenn rising_edge_occured	= 1 => Statuswort Bit 15 = 1

Das Setzen des jeweiligen Bits in **sample_control** setzt zum einen das entsprechende Statusbit in **sample_status** zurück und schaltet im Falle des "Autolock"- Samplings das Sampling wieder frei.

Sub-Index	04 _h
Description	sample_control
Data Type	UINT8
Access	wo
PDO Mapping	yes
Units	-
Value Range	0 3, siehe Tabelle
Default Value	0

RECORD_Eintrag Ab Firmware 3.2.0.1.

Bit	Wert	Name	Beschreibung
0	01 _h	falling_edge_enable	Sampling bei fallender Flanke
1	02 _h	rising_edge_enable	Sampling bei steigender Flanke

Die folgenden Objekte enthalten die gesampelten Positionen.

Sub-Index	05 _h
Description	sample_position_rising_edge
Data Type	INT32
Access	ro
PDO Mapping	yes
Units	position units
Value Range	-
Default Value	-

 $\label{eq:RECORD_Eintrag} \mbox{ Ab Firmware } \\ 3.2.0.1.$

1

Sub-Index	06 _h
Description	sample_position_falling_edge
Data Type	INT32
Access	ro
PDO Mapping	yes
Units	position units
Value Range	-
Default Value	-

 $\label{eq:RECORD_Eintrag} \mbox{Ab Firmware} \\ 3.2.0.1.$

.

6.16 Bremsen-Ansteuerung

6.16.1 Übersicht

Mittels der nachfolgenden Objekte kann parametriert werden, wie der Regler eine eventuell im Motor integrierte Haltebremse ansteuert. Die Haltebremse wird immer freigeschaltet, sobald die Reglerfreigabe eingeschaltet wird. Für Haltebremsen mit hoher mechanischer Trägheit kann eine Verzögerungszeit parametriert werden, damit die Haltebremse in Eingriff ist, bevor die Endstufe ausgeschaltet wird (Durchsacken vertikaler Achsen). Diese Verzögerung wird durch das Objekt brake_delay_time parametriert. Wie aus der Skizze zu entnehmen ist, wird bei Einschalten der Reglerfreigabe der Drehzahl-Sollwert erst nach der brake_delay_time freigegeben und bei Ausschalten der Reglerfreigabe das Abschalten der Regelung um diese Zeit verzögert.

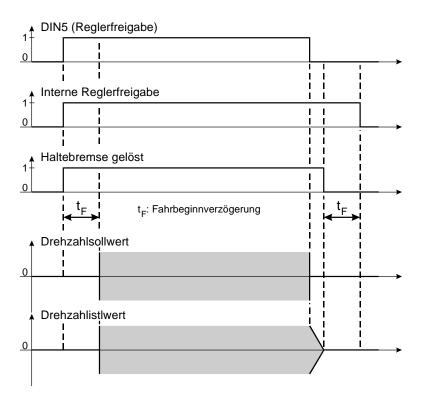


Abbildung 6.10: Funktion der Bremsverzögerung (bei Drehzahlregelung / Positionieren)

6.16.2 Beschreibung der Objekte

Index	Objekt	Name	Тур	Attr.
6510 _h	RECORD	drive_data		rw

6.16.2.1 Objekt 6510_{h} 18_{h} : brake_delay_time

Über das Objekt **brake_delay_time** kann die Bremsverzögerungszeit parametriert werden.

Index	6510 _h	R
Name	drive_data	
Object Code	RECORD	
No. of Elements	51<- LINK! Nicht hier ändern !!	

RECORD_MAIN

Sub-Index	18 _h
Description	brake_delay_time
Data Type	UINT16
Access	rw
PDO Mapping	no
Units	ms
Value Range	032000
Default Value	0

6.17 Geräteinformationen

Index	Objekt	Name	Тур	Attr.
1018 _h	RECORD	identity_object		rw
6510 _h	RECORD	drive_data		rw

Über zahlreiche CAN-Objekte können die verschiedensten Informationen wie Reglertyp, verwendete Firmware, etc. aus dem Gerät ausgelesen werden.

6.17.1 Beschreibung der Objekte

6.17.1.1 Objekt 1018_h: identity_object

Über das in der DS301 festgelegte **identity_object** kann der Regler in einem CANopen-Netzwerk eindeutig identifiziert werden. Zu diesem Zweck kann der Herstellercode (**vendor_id**), ein eindeutiger Produktcode (**product_code**), die Revisionsnummer der CANopen-Implementation (**revision_number**) und die Seriennummer des Geräts (**serial_number**) ausgelesen werden.

Index	1018 _h	RE
Name	identity_object	
Object Code	RECORD	
No. of Elements	4	

RECORD_MAIN

Sub-Index	01 _h
Description	vendor_id
Data Type	UINT32
Access	ro
PDO Mapping	no
Units	-
Value Range	000000E4
Default Value	000000E4

Sub-Index	02 _h
Description	product_code
Data Type	UINT32
Access	ro
PDO Mapping	no
Units	-
Value Range	s.u.
Default Value	s.u.

RECORD_Eintrag

Wert	Bedeutung
2045 _h	C 1-02
2046 _h	C 1-05
2050 _h	C 1-08
204A _h	C 3-05
204B _h	C 3-10

Sub-Index	03 _h
Description	revision_number
Data Type	UINT32
Access	ro
PDO Mapping	no
Units	MMMMSSSS _h (M: main version, S: sub version)
Value Range	-
Default Value	-

RECORD_Eintrag

Sub-Index	04 _h
Description	serial_number
Data Type	UINT32
Access	ro
PDO Mapping	no
Units	-
Value Range	-
Default Value	-

6.17.1.2 Objekt 6510_{h} _AO_h: drive_serial_number

Über das Objekt **drive_serial_number** kann die Seriennummer des Reglers ausgelesen werden. Dieses Objekt dient der Kompatibilität zu früheren Versionen.

Index	6510 _h	RE
Name	drive_data	
Object Code	RECORD	
No. of Elements	51<- LINK! Nicht hier ändern !!	

RECORD_MAIN

Sub-Index	AO _h
Description	drive_serial_number
Data Type	UINT32
Access	ro
PDO Mapping	no
Units	-
Value Range	-
Default Value	-

RECORD_Eintrag

6.17.1.3 Objekt 6510_h_A1_h: drive_type

Über das Objekt **drive_type** kann der Gerätetyp des Reglers ausgelesen werden. Dieses Objekt dient der Kompatibilität zu früheren Versionen.

Sub-Index	A1 _h
Description	drive_type
Data Type	UINT32
Access	ro
PDO Mapping	no
Units	-
Value Range	siehe 1018 _h _02 _h , product_code
Default Value	siehe 1018 _h _02 _h , product_code

6.17.1.4 Objekt 6510_h_A9_h: firmware_main_version

Über das Objekt **firmware_main_version** kann die Hauptversionsnummer der Firmware (Produktstufe) ausgelesen werden.

Sub-Index	A9 _h
Description	firmware_main_version
Data Type	UINT32
Access	ro
PDO Mapping	no
Units	MMMMSSSS _h (M: main version, S: sub version)
Value Range	-
Default Value	-

RECORD_Eintrag

6.17.1.5 Objekt 6510_h_AA_h: firmware_custom_version

Über das Objekt **firmware_custom_version** kann die Versionsnummer der kundenspezifischen Variante der Firmware ausgelesen werden.

Sub-Index	AA _h
Description	firmware_custom_version
Data Type	UINT32
Access	ro
PDO Mapping	no
Units	MMMMSSSS _h (M: main version, S: sub version)
Value Range	-
Default Value	-

RECORD_Eintrag

6.17.1.6 Objekt 6510_h_AD_h: km_release

Über die Versionsnummer des **km_release** können Firmwarestände der gleichen Produktstufe unterschieden werden.

Sub-Index	ADh
Description	km_release
Data Type	UINT32
Access	ro
PDO Mapping	no
Units	-
Value Range	MMMMSSSS _h (M: main version, S: sub version)
Default Value	-

RECORD_Eintrag Ab Firmware 3.5.x.1.

6.17.1.7 Objekt 6510_h_AC_h: firmware_type

Über das Objekt **firmware_type** kann ausgelesen werden, für welche Gerätefamilie und für welchen Winkelgebertyp die geladene Firmware geeignet ist. Da bei der item C Serie das Winkelgeber-Interface nicht mehr steckbar ist, sind im Parameter G grundsätzlich alle Bits gesetzt (F_h).

Sub-Index	AC _h
Description	firmware_type
Data Type	UINT32
Access	ro
PDO Mapping	no
Units	00000GX _h
Value Range	00000F2 _h
Default Value	00000F2 _h

RECORD_Eintrag

Wert (X)	Bedeutung
O_h	IMD-F
1 _h	ARS
2_h	ARS 2000

6.17.1.8 Objekt 6510_h_B0_h: cycletime_current_controller

Über das Objekt **cycletime_current_controller** kann die Zykluszeit des Stromreglers in Mikrosekunden ausgelesen werden.

Sub-Index	BO _h
Description	cycletime_current_controller
Data Type	UINT32
Access	ro
PDO Mapping	no
Units	μs
Value Range	-
Default Value	00000068 _h

6.17.1.9 Objekt 6510_h_B1_h: cycletime_velocity_controller

Über das Objekt **cycletime_velocity_controller** kann die Zykluszeit des Drehzahlreglers in Mikrosekunden ausgelesen werden.

Sub-Index	B1 _h
Description	cycletime_velocity_controller
Data Type	UINT32
Access	ro
PDO Mapping	no
Units	μs
Value Range	-
Default Value	000000D0 _h

RECORD_Eintrag

6.17.1.10 Objekt 6510_h_B2_h: cycletime_position_controller

Über das Objekt **cycletime_position_controller** kann die Zykluszeit des Lagereglers in Mikrosekunden ausgelesen werden.

Sub-Index	B2 _h
Description	cycletime_position_controller
Data Type	UINT32
Access	ro
PDO Mapping	no
Units	μs
Value Range	-
Default Value	000001A0 _h

RECORD_Eintrag

6.17.1.11 Objekt 6510_h_B3_h: cycletime_trajectory_generator

Über das Objekt **cycletime_trajectory_generator** kann die Zykluszeit der Positionier-Steuerung in Mikrosekunden ausgelesen werden.

Sub-Index	B3 _h
Description	cycletime_tracectory_generator
Data Type	UINT32
Access	ro
PDO Mapping	no
Units	μs
Value Range	-
Default Value	00000341 _h

6.17.1.12 Objekt 6510_h_CO_h: commissioning_state

Das Objekt commissioning_state wird von der item Motion Soft™ beschrieben, wenn bestimmte Parametrierungen durchgeführt worden sind (z.B. des Nennstroms). Nach der Auslieferung und nach restore_default_parameter enthält dieses Objekt eine Null. In diesem Fall wird auf dem 7-Segment-Display des Antriebsreglers ein "A" angezeigt, um darauf hinzuweisen, dass dieses Gerät noch nicht parametriert wurde. Wenn der Regler komplett unter CANopen parametriert wird, muss mindestens ein Bit in diesem Objekt gesetzt werden, um die Anzeige "A" zu unterdrücken. Natürlich ist es bei Bedarf auch möglich, dieses Objekt zu nutzen, um sich den Zustand der Reglerparametrierung zu merken. Beachten Sie in diesem Fall, dass die item Motion Soft™ ebenfalls auf dieses Objekt zugreift.

Sub-Index	CO _h
Description	commisioning_state
Data Type	UINT32
Access	rw
PDO Mapping	no
Units	-
Value Range	-
Default Value	0

RECORD_Eintrag

Bit	Bedeutung	Bit	Bedeutung
0	Nennstrom gültig	8	Stromregler-Parameter gültig
1	Maximalstrom gültig	9	Reserviert
2	Polzahl des Motors gültig	10	Physik. Einheiten gültig
3	Offsetwinkel / Drehsinn gültig	11	Drehzahlregler gültig
4	Reserviert	12	Lageregler gültig
5	Offsetwinkel / Drehsinn Hallgeber gültig	13	Sicherheitsparameter gültig
		14	Reserviert
6	Reserviert	15	Endschalter-Polarität gültig
7	Absolutlage Gebersystem gültig	1631	Reserviert

Vorsicht!

Dieses Objekt enthält keinerlei Informationen darüber, ob der Regler dem Motor und der Applikation entsprechend **richtig** parametriert wurde, sondern nur, ob die genannten Punkte nach der Auslieferung mindestens einmal überhaupt parametriert wurden.

j

"A" im 7-Segment-Display

Beachten Sie, dass mindestens ein Bit im Objekt commissioning_state gesetzt werden muss, um das "A" auf dem Displays Ihres Reglers zu unterdrücken.

6.18 Fehlermanagement

6.18.1 Übersicht

Die item Servo Positioning Controller C Serie bieten die Möglichkeit, die Fehlerreaktion einzelner Ereignisse, wie z.B. das Auftreten eines Schleppfehlers, zu ändern. Dadurch reagiert der Regler unterschiedlich, wenn ein bestimmtes Ereignis eintritt: So kann je nach Einstellung heruntergebremst werden, die Enstufe sofort ausgeschaltet werden aber auch lediglich eine Warnung auf dem Display angezeigt werden.

Für jedes Ereignis ist herstellerseitig eine Mindestreaktion vorgesehen, die nicht unterschritten werden kann. So lassen sich "kritische" Fehler wie beispielsweise 06-0 Kurzschluss Endstufe nicht umparametrieren, da hier eine sofortige Abschaltung notwendig ist, um den Servoregler vor einer eventuellen Zerstörung zu schützen.

Wird eine niedrigere Fehlerreaktion als für den jeweiligen Fehler zulässig eingetragen, wird der Wert auf die niedrigst zulässige Fehlerreaktion begrenzt. Eine Liste aller Fehlernummern befindet sich im Softwarehandbuch "item Motion Soft".

6.18.2 Beschreibung der Objekte

6.18.2.1 In diesem Kapitel behandelte Objekte

Index	Objekt	Name	Тур	Attr.
2100 _h	RECORD	error_management		ro
2100 _h _01 _h	VAR	error_number	UINT8	rw
2100 _h _02 _h	VAR	error_reaction_code	UINT8	rw
200F _h	VAR	last_warning_code	UINT16	ro

6.18.2.2 Objekt 2100_h: error_management

Index	2100 _h
Name	error_management
Object Code	RECORD
No. of Elements	2

RECORD_MAIN Ab Firmware 3.2.0.1.

Im Objekt **error_number** muss die Hauptfehlernummer angegeben werden, deren Reaktion geändert werden soll. Die Hauptfehlernummer ist in der Regel vor dem Bindestrich angegeben (z.B. Fehler 08-2, Hauptfehlernummer 8). Für mögliche Fehlernummern siehe hierzu auch Kap. 5.5

Sub-Index	01 _h
Description	error_number
Data Type	UINT8
Access	rw
PDO Mapping	no
Units	-
Value Range	1 96
Default Value	1

RECORD_Eintrag Ab Firmware 3.2.0.1.

Im Objekt error_reaction_code kann die Reaktion des Fehlers verändert werden. Wird die herstellerseitige Mindestreaktion unterschritten, wird auf diese begrenzt. Die wirklich eingestellte Reaktion kann durch Rücklesen bestimmt werden.

Sub-Index	02 _h
Description	error_reaction_code
Data Type	UINT8
Access	rw
PDO Mapping	no
Units	-
Value Range	0, 1, 3, 5, 7, 8
Default Value	hängt von error_number ab

 $\begin{tabular}{ll} {\sf RECORD_Eintrag}\ Ab\ Firmware \\ 3.2.0.1. \end{tabular}$

1

Wert Bedeutung

0	Keine Aktion	
1	Eintrag im Puffer	
3	Warnung auf dem 7-Segment-Display	
5	Reglerfreigabe aus	
7	Bremsen mit Maximalstrom	
8	Endstufe aus	

6.18.2.3 Objekt 200F_h: last_warning_code

Warnungen sind bemerkenswerte Ereignisse des Antriebs (z.B. ein Schleppfehler), die im Gegensatz zu einem Fehler nicht zum Stillsetzen des Antriebs führen sollen. Warnungen werden auf der 7-Segmentanzeige des Reglers angezeigt und danach automatisch vom Regler zurückgesetzt.

Die letzte aufgetretene Warnung kann über das folgende Objekt ausgelesen werden: Dabei zeigt Bit 15 an, ob die Warnung aktuell noch aktiv ist.

Index	200F _h
Name	last_warning_code
Object Code	VAR
Data Type	UINT16

VAR_Eintrag Ab Firmware 3.5.x.1

_		_
Access	ro],
PDO Mapping	yes	
Units	-	1
Value Range	-	l
Default Value	-	Ī

VAR_Eintrag

Bit	Wert	Beschreibung
0 3	000F _h	Unternummer der Warnung
4 11	OFFO _h	Hauptnummer der Warnung
15	8000 _h	Warnung ist aktiv

7 Gerätesteuerung (Device Control)

7.1 Zustandsdiagramm (State Machine)

7.1.1 Übersicht

Das nachfolgende Kapitel beschreibt, wie der Regler unter CANopen gesteuert wird, also wie beispielsweise die Endstufe eingeschaltet oder ein Fehler quittiert wird.

Unter CANopen wird die gesamte Steuerung des Reglers über zwei Objekte realisiert: Über das controlword kann der Host den Regler steuern, während der Status des Reglers im Objekt statusword zurückgelesen werden kann. Zur Erklärung der Reglersteuerung werden die folgenden Begriffe verwandt:

Zustand: Je nachdem ob beispielsweise die Endstufe eingeschaltet oder ein Fehler

(State) aufgetreten ist befindet sich der Regler in verschiedenen Zuständen. Die

unter CANopen definierten Zustände werden im Laufe des Kapitels

vorgestellt.

Beispiel: **SWITCH_ON_DISABLED**

Zustandsübergang Ebenso wie die Zustände ist es unter CANopen ebenfalls definiert, wie man

(State Transition) von einem Zustand zu einem anderen gelangt (z.B. um einen Fehler zu

quittieren). Zustandsübergänge werden vom Host durch Setzen von Bits im controlword ausgelöst oder intern durch den Regler, wenn dieser

beispielsweise einen Fehler erkennt.

Kommando Zum Auslösen von Zustandsübergängen müssen bestimmte Kombinationen

(Command) von Bits im controlword gesetzt werden. Eine solche Kombination wird als

Kommando bezeichnet.

Beispiel: Enable Operation

Zustandsdiagramm Die Zustände und Zustandsübergänge bilden zusammen das

(State Machine) Zustandsdiagramm, also die Übersicht über alle Zustände und die von dort

möglichen Übergänge.

7.1.2 Das Zustandsdiagramm des Reglers (State Machine)

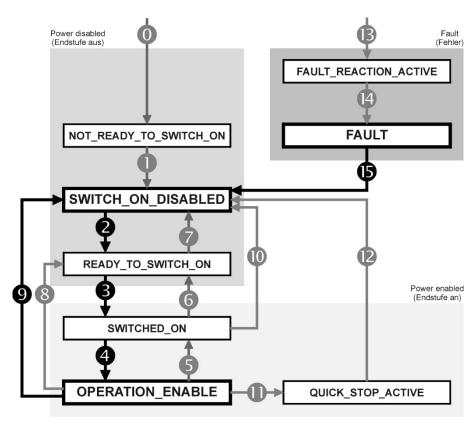


Abbildung 7.11: Zustandsdiagramm des Reglers

Das Zustandsdiagramm kann grob in drei Bereiche aufgeteilt werden: "Power Disabled" bedeutet, dass die Endstufe ausgeschaltet ist und "Power Enabled" dass die Endstufe eingeschaltet ist. Im Bereich "Fault" sind die zur Fehlerbehandlung notwendigen Zustände zusammengefasst.

Die wichtigsten Zustände des Reglers sind im Diagramm hervorgehoben dargestellt. Nach dem Einschalten initialisiert sich der Regler und erreicht schließlich den Zustand SWITCH_ON_DISABLED. In diesem Zustand ist die CAN-Kommunikation voll funktionsfähig und der Regler kann parametriert werden (z.B. die Betriebsart "Drehzahlregelung" eingestellt werden). Die Endstufe ist ausgeschaltet und die Welle ist somit frei drehbar. Durch die Zustandsübergänge 2, 3, 4 – was im Prinzip der CAN-Reglerfreigabe entspricht – gelangt man in den Zustand OPERATION_ENABLE. In diesem Zustand ist die Endstufe eingeschaltet und der Motor wird gemäß der eingestellten Betriebsart geregelt Stellen Sie daher vorher unbedingt sicher, dass der Antrieb richtig parametriert ist und ein entsprechender Sollwert gleich Null ist.

Der Zustandsübergang 9 entspricht der Wegnahme der Freigabe, d.h. ein noch laufender Motor würde ungeregelt austrudeln.

Tritt ein Fehler auf so wird (egal <u>aus</u> welchem Zustand) letztlich in den Zustand **FAULT** verzweigt. Je nach Schwere des Fehlers können vorher noch bestimmte Aktionen, wie z.B. eine Notbremsung ausgeführt werden (**FAULT_REACTION_ACTIVE**).

Um die genannten Zustandsübergänge auszuführen müssen bestimmte Bitkombinationen im **controlword** (siehe unten) gesetzt werden. Die unteren 4 Bits des **controlwords** werden gemeinsam ausgewertet, um einen Zustandsübergang auszulösen. Im Folgenden werden zunächst nur die wichtigsten Zustandsübergänge 2, 3, 4, 9 und 15 erläutert. Eine Tabelle aller möglichen Zustände und Zustandsübergänge findet sich am Ende dieses Kapitels.

Die folgende Tabelle enthält in der 1. Spalte den gewünschten Zustandsübergang und in der 2. Spalte die dazu notwendigen Voraussetzungen (Meistens ein Kommando durch den Host, hier mit Rahmen dargestellt). Wie dieses Kommando erzeugt wird, d.h. welche Bits im **controlword** zu setzen sind, ist in der 3. Spalte ersichtlich (x = nicht relevant).

Nr.	Wird durchgeführt wenn	Bitkombination (controlword)					Aktion
		Bit	3	2	1	0	
2	Endstufen- u. Reglerfreig. vorh. + Kommando Shutdown	Shutdown =	х	1	1	0	Keine
3	Kommando Switch On	Switch On =	х	1	1	1	Einschalten der Endstufe
4	Kommando Enable Operation	Enable Operation =	1	1	1	1	Regelung gemäß eingestellter Betriebsart
9	Kommando Disable Voltage	Disable Voltage =	х	x x 0 x		х	Endstufe wird gesperrt. Motor ist frei drehbar.
15	Fehler behoben+ Komman do Fault Reset	Fault Reset =	Bit 7 =			Fehler quittieren	

Abbildung 7.12: Wichtigste Zustandsübergänge des Reglers

BEISPIEL

Nachdem der Regler parametriert wurde, soll der Regler "freigegeben", d.h. die Endstufe eingeschaltet werden:

- 1.) Der Regler ist im Zustand SWITCH_ON_DISABLED
- 2.) Der Regler soll in den Zustand **OPERATION_ENABLE**
- 3.) Laut Zustandsdiagramm (Abbildung 7.11) sind die Übergänge 2, 3 und 4 auszuführen.
- 4.) Aus Abbildung 7.12 folgt:

 Übergang 2:
 controlword = 0006h
 Neuer Zustand: READY_TO_SWITCH_ON *1)

 Übergang 3:
 controlword = 0007h
 Neuer Zustand: SWITCHED_ON *1)

 Übergang 4:
 controlword = 000Fh
 Neuer Zustand: OPERATION_ENABLE *1)

Hinweise:

- 1.) Das Beispiel geht davon aus, dass keine weiteren Bits im **controlword** gesetzt sind (Für die Übergänge sind ja nur die Bits 0..3 wichtig).
- 2.) Die Übergänge 3 und 4 können zusammengefasst werden, indem das **controlword** gleich auf 000F_h gesetzt wird. Für den Zustandsübergang 2 ist das gesetzte Bit 3 nicht relevant.

7.1.2.1 Zustandsdiagramm: Zustände

In der folgenden Tabelle sind alle Zustände und deren Bedeutung aufgeführt:

Name	Bedeutung
NOT_READY_TO_SWITCH_ON	Der Regler führt einen Selbsttest durch. Die CAN-Kommunikation arbeitet noch nicht.
SWITCH_ON_DISABLED	Der Regler hat seinen Selbsttest abgeschlossen. CAN-Kommunikation ist möglich.
READY_TO_SWITCH_ON	Der Regler wartet bis die digitalen Eingänge "Endstufen-" und "Reglerfreigabe" an 24 V liegen. (Reglerfreigabelogik "Digitaler Eingang und CAN").
SWITCHED_ON *1)	Die Endstufe ist eingeschaltet.
OPERATION_ENABLE *1)	Der Motor liegt an Spannung und wird entsprechend der Betriebsart geregelt.
QUICKSTOP_ACTIVE *1)	Die Quick Stop Function wird ausgeführt (siehe: quick_stop_option_code). Der Motor liegt an Spannung und wird entsprechend der Quick Stop Function geregelt.
FAULT_REACTION_ACTIVE *1)	Es ist ein Fehler aufgetreten. Bei kritischen Fehlern wird sofort in den Status Fault gewechselt. Ansonsten wird die im fault_reaction_option_code vorgegebene Aktion ausgeführt. Der Motor liegt an Spannung und wird entsprechend der Fault Reaction Function geregelt.
FAULT	Es ist ein Fehler aufgetreten. Der Motor ist spannungsfrei.

^{*1)} Die Endstufe ist eingeschaltet.

7.1.2.2 Zustandsdiagramm: Zustandsübergänge

In der folgenden Tabelle sind alle Zustände und deren Bedeutung aufgeführt:

Nr.	Wird durchgeführt wenn	Bitkombination (controlword)						Aktion
			Bit 3 2 1 0				0	
0	Eingeschaltet o. Reset erfolgt	interner Übergang	ergang					Selbsttest ausführen
1	Selbsttest erfolgreich	interner Übergang	er Übergang				Aktivierung der CAN- Kommunikation	
2	Endstufen- u. Reglerfreig. vorh. +	Shutdown	11	Х	1	1	0	-

^{*1)} Der Host muss warten, bis der Zustand im **statusword** zurückgelesen werden kann. Dieses wird weiter unten noch ausführlich erläutert.

Nr.	Wird durchgeführt wenn	Bitkombination (controlwo	Aktion				
		Bit	3	2	1	0	
	Kommando Shutdown						
3	Kommando Switch On	Switch On =	Х	1	1	1	Einschalten der Endstufe
4	Kommando Enable Operation	Enable Operation =	1	1	1	1	Regelung gemäß eingestellter Betriebsart
5	Kommando Disable Operation	Disable Operation =	0	1	1	1	Endstufe wird gesperrt. Motor ist frei drehbar
6	Kommando Shutdown	Shutdown =	X	1	1 1 0		Endstufe wird gesperrt. Motor ist frei drehbar
7	Kommando Quick Stop	Quick Stop	x	x 0		х	-
8	Kommando Shutdown	Shutdown =	Х	(1 1 (0	Endstufe wird gesperrt. Motor ist frei drehbar
9	Kommando Disable Voltage	Disable Voltage =	Х	х	0	х	Endstufe wird gesperrt. Motor ist frei drehbar.
10	Kommando Disable Voltage	Disable Voltage =	Х	х	0	х	Endstufe wird gesperrt. Motor ist frei drehbar
11	Kommando <mark>Quick Stop</mark>	Quick Stop =	x	0	1	х	Es wird eine Bremsung gemäß quick_stop_option_code eingeleitet.
12	Bremsung beendet o. Kommando Disable Voltage	Disable Voltage =	Х	х	0	х	Endstufe wird gesperrt. Motor ist frei drehbar
13	Fehler aufgetreten	interner Übergang	g				Bei unkritischen Fehlern Reaktion gemäß fault_ reaction_option_code. Bei kritischen Fehlern folgt Übergang 14
14	Fehlerbehandlung ist beendet	interner Übergang					Endstufe wird gesperrt. Motor ist frei drehbar
15	Fehler behoben+ Kommando Fault Reset	Fault Reset =	Bit	7 =.	_		Fehler quittieren (bei steigender Flanke)

Endstufe gesperrt...

...bedeutet, dass die Leistungshalbleiter (Transistoren) nicht mehr angesteuert werden. Wenn dieser Zustand bei einem drehenden Motor eingenommen wird, so trudelt dieser ungebremst aus. Eine eventuell vorhandene mechanische Motorbremse wird hierbei automatisch angezogen.

Vorsicht: Das Signal garantiert nicht, dass der Motor wirklich spannungsfrei ist.

Endstufe freigegeben...

...bedeutet, dass der Motor entsprechend der gewählten Betriebsart angesteuert und geregelt wird. Eine eventuell vorhandene mechanische Motorbremse wird automatisch gelöst. Bei einem Defekt oder einer Fehlparametrierung (Motorstrom, Polzahl, Resolveroffsetwinkel etc.) kann es zu einem unkontrollierten Verhalten des Antriebes kommen.

7.1.3 controlword (Steuerwort)

7.1.3.1 Objekt 6040h: controlword

Mit dem **controlword** kann der aktuelle Zustand des Reglers geändert bzw. direkt eine bestimmte Aktion (z.B. Start der Referenzfahrt) ausgelöst werden. Die Funktion der Bits 4, 5, 6 und 8 hängt von der aktuellen Betriebsart (**modes_of_operation**) des Reglers ab, die nach diesem Kapitel erläutert wird.

Index	6040 _h	VAR_Eintrag
Name	controlword	
Object Code	VAR	
Data Type	UINT16	
-	,	•

Access	rw	VAR_Eintrag
PDO Mapping	yes	***** <u></u> ag
Units	-	
Value Range	-	
Default Value	0	

Seite 187

Bit	Wert	Funktion					
0	0001 _h						
1	0002_{h}	Steuerung der Zustandsübergänge.					
2	0004_{h}	(Diese Bits werden gemeinsam ausgewertet)					
3	0008 _h						
4	0010_h	new_set_point / start_homing_operation / enable_ip_mode					
5	0020_{h}	change_set_immediatly					
6	0040_{h}	absolute / relative					
7	0080_{h}	reset_fault					
8	0100_{h}	halt					
9	0200_{h}	reserved set to 0					
10	0400_{h}	reserved set to 0					
11	0800_{h}	reserved set to 0					
12	1000 _h	reserved set to 0					
13	2000 _h	reserved set to 0					
14	4000 _h	reserved set to 0					
15	8000 _h	reserved set to 0					

Tabelle 7.1: Bitbelegung des controlword

Wie bereits umfassend beschrieben können mit den Bits 0..3 Zustandsübergänge ausgeführt werden. Die dazu notwendigen Kommandos sind hier noch einmal in einer Übersicht dargestellt. Das Kommando Fault Reset wird durch einen positiven Flankenwechsel (von 0 nach 1) von Bit 7 erzeugt.

Kommando:	Bit 7	Bit 3	Bit 2	Bit 1	Bit 0
	0080 _h	0008 _h	0004 _h	0002 _h	0001 _h
Shutdown	×	×	1	1	0
Switch On	×	×	1	1	1
Disable Voltage	×	×	×	0	×
Quick Stop	×	×	0	1	×
Disable Operation	×	0	1	1	1
Enable Operation	×	1	1	1	1
Fault Reset		×	×	×	×

Tabelle 7.2: Übersicht aller Kommandos (× = nicht relevant)

Da einige Statusänderungen einen gewissen Zeitraum beanspruchen, <u>müssen</u> alle über das **controlword** ausgelösten Statusänderungen über das **statusword** zurückgelesen werden. Erst wenn der angeforderte Status auch im **statusword** gelesen werden kann, darf über das **controlword** ein weiteres Kommando eingeschrieben werden.

Nachfolgend sind die restlichen Bits des **controlwords** erläutert. Einige Bits haben dabei je nach Betriebsart (**modes_of_operation**), d.h. ob der Regler z.B. drehzahl- oder momentengeregelt wird, unterschiedliche Bedeutung:

Bit 4		Abhängig von modes_of_operation:
	new_set_point	Im Profile Position Mode: Eine steigende Flanke signalisiert dem Regler, dass ein neuer Fahrauftrag übernommen werden soll. Siehe dazu unbedingt auch Kapitel 8.3.
	start_homing_operation	Im Homing Mode : Eine steigende Flanke bewirkt, dass die parametrierte Referenzfahrt gestartet wird. Eine fallende Flanke bricht eine laufende Referenzfahrt vorzeitig ab.
	enable_ip_mode	Im Interpolated Position Mode: Dieses Bit muss gesetzt werden, wenn die Interpolations- Datensätze ausgewertet werden sollen. Es wird durch das Bit ip_mode_active im statusword quittiert. Siehe hierzu unbedingt auch Kapitel 8.4

Bit 5	change_set_immediatly	Nur im Profile Position Mode:
		Wenn dieses Bit nicht gesetzt ist, so wird bei einem neuen Fahrauftrag zuerst ein eventuell laufender abgearbeitet und erst dann mit dem neuen begonnen. Bei gesetztem Bit wird eine laufende Positionierung sofort abgebrochen und durch den neuen Fahrauftrag ersetzt. Siehe dazu unbedingt auch Kapitel 8.3.
Bit 6	relative	Nur im Profile Position Mode :
		Bei gesetztem Bit bezieht der Regler die Zielposition (target_position) des aktuellen Fahrauftrages auf die Sollposition (position_demand_value) des Lagereglers.
Bit 7	reset_fault	
		Beim Übergang von Null auf Eins versucht der Regler die vorhandenen Fehler zu quittieren. Dies gelingt nur, wenn die Ursache für den Fehler behoben wurde.
Bit 8		Abhängig von modes_of_operation:
	halt	Im Profile Position Mode: Bei gesetztem Bit wird die laufende Positionierung
		abgebrochen. Gebremst wird hierbei mit der profile_deceleration. Nach Beendigung des Vorgangs wird im statusword das Bit target_reached gesetzt. Das Löschen des Bits hat keine Auswirkung.
	halt	Im Profile Velocity Mode:
		Bei gesetztem Bit wird die Drehzahl auf Null abgesenkt. Gebremst wird hierbei mit der profile_deceleration . Das Löschen des Bits bewirkt, dass der Regler wieder beschleunigt.
	halt	Im Profile Torque Mode:
		Bei gesetztem Bit wird das Drehmoment auf Null abgesenkt. Dies geschieht mit der torque_slope. Das Löschen des Bits bewirkt, dass der Regler wieder beschleunigt.

halt

Im **Homing Mode**:

Bei gesetztem Bit wird die laufende Referenzfahrt abgebrochen. Das Löschen des Bits hat keine Auswirkung.

7.1.4 Auslesen des Reglerzustands

Ähnlich wie über die Kombination mehrerer Bits des **controlwords** verschiedene Zustandsübergänge ausgelöst werden können, kann über die Kombination verschiedener Bits des **statusword** ausgelesen werden, in welchem Zustand sich der Regler befindet.

Die folgende Tabelle listet die möglichen Zustände des Zustandsdiagramms sowie die zugehörige Bitkombination auf, mit der sie im **statusword** angezeigt werden.

Zustand	Bit 6	Bit 5
Zuotaria	0040 _h	0020 _h
NOT_READY_TO_SWITCH_ON	0	×
SWITCH_ON_DISABLED	1	×
READY_TO_SWITCH_ON	0	1
SWITCHED_ON	0	1
OPERATION_ENABLE	0	1
QUICK_STOP_ACTIVE	0	0
FAULT_REACTION_ACTIVE	0	×
FAULT	0	×
FAULT (gemäß DS402) 1)	0	×

Bit 3	Bit 2	Bit 1	Bit 0	Maske	Wert
0008 _h	0004 _h	0002 _h	0001 _h		
0	0	0	0	004F _h	0000 _h
0	0	0	0	004F _h	0040 _h
0	0	0	1	006F _h	0021 _h
0	0	1	1	006F _h	0023 _h
0	1	1	1	006F _h	0027 _h
0	1	1	1	006F _h	0007 _h
1	1	1	1	004F _h	000F _h
1	1	1	1	004F _h	000F _h
1	0	0	0	004F _h	0008 _h

Tabelle 7.3: Gerätestatus (× = nicht relevant)

1).

In bisherigen CANopen-Implementierungen wird der Zustand FAULT nicht gemäß DS 402 zurückgemeldet. Daher besteht die Möglichkeit über das Objekt **compatibility_control** (siehe Kapitel 6.2) die Rückmeldung gemäß DS402 auszuwählen.

Für Kompatibilität zu früheren Firmwareversionen brauchen keine Änderungen durchgeführt werden!

BEISPIEL

Das obige Beispiel zeigt, welche Bits im **controlword** gesetzt werden müssen, um den Regler freizugeben. Jetzt soll dabei der neu eingeschriebene Zustand aus dem **statusword** ausgelesen werden:

Übergang von SWITCH_ON_DISABLED zu OPERATION_ENABLE:

- 1.) Zustandsübergang 2 ins controlword schreiben.
- 2.) Warten, bis der Zustand READY_TO_SWITCH_ON im statusword angezeigt wird.

Übergang 2: controlword = 0006_h Warten bis (statusword & $006F_h$) = 0021_h^{*1}

- 3.) Zustandsübergang 3 und 4 können zusammengefasst ins controlword geschrieben werden.
- 4.) Warten, bis der Zustand **OPERATION_ENABLE** im **statusword** angezeigt wird.

Übergang 3+4: controlword = $000F_h$ Warten bis (statusword & $006F_h$) = 0027_h^{*1}

Hinweis:

Das Beispiel geht davon aus, dass keine weiteren Bits im **controlword** gesetzt sind (Für die Übergänge sind ja nur die Bits 0..3 wichtig).

7.1.5 statuswords (Statusworte)

7.1.5.1 Objekt 6041_h: statusword

Index	6041 _h	VAR_Eintrag
Name	statusword	
Object Code	VAR	
Data Type	UINT16	

Access ro

PDO Mapping yes

Units
Value Range
Default Value -

VAR_Eintrag

^{*1)} Für die Identifizierung der Zustände müssen auch <u>nicht</u> gesetzte Bits ausgewertet werden (siehe Tabelle). Daher muss das **statusword** entsprechend maskiert werden.

Bit	Wertigkeit	Name
0	0001 _h	
1	0002_{h}	Zustand des Reglers (s. Tabelle 7.3).
2	0004 _h	(Diese Bits müssen gemeinsam ausgewertet werden)
3	0008 _h	
4	0010_{h}	voltage_enabled
5	0020_h	Zustand dee Deglere (e. Tabelle 7.2)
6	0040_h	Zustand des Reglers (s. Tabelle 7.3).
7	0080_h	warning
8	0100_h	drive_is_moving
9	0200_h	remote
10	0400_h	target_reached
11	0800_h	internal_limit_active
12	1000 _h	set_point_acknowledge / speed_0 / homing_attained / ip_mode_active
13	2000 _h	following_error / homing_error
14	4000 _h	manufacturer_statusbit
15	8000 _h	trigger_result

Tabelle 7.4: Bitbelegung im statusword

爿

Alle Bits des **statusword** sind nicht gepuffert. Sie repräsentieren den aktuellen Gerätestatus.

Neben dem Reglerstatus werden im **statusword** diverse Ereignisse angezeigt, d.h. jedem Bit ist ein bestimmtes Ereignis wie z.B. Schleppfehler zugeordnet. Die einzelnen Bits haben dabei folgende Bedeutung:

Bit 4 voltage_enabled

Dieses Bit ist gesetzt, wenn die Endstufentransistoren ausgeschaltet sind.

Wenn im Objekt 6510_h _FO_h (compatibility_control) Bit 7 gesetzt ist, gilt (siehe Kap. 6.2) ¹⁾:

Dieses Bit ist gesetzt, wenn die Endstufentransistoren

eingeschaltet sind.

ACHTUNG:

Bei einem Defekt kann der Motor trotzdem unter Spannung stehen.

Bit 5	quick_stop							
		Bei gelöschtem Bit führt der Antrieb einen Quick Stop gemäß quick_stop_option_code aus.						
Bit 7	warning							
		Dieses Bit zeigt an, dass eine Drehrichtung gesperrt ist, weil einer Endschalter ausgelöst wurde. Die Sollwertsperre wird wieder gelöscht, wenn eine Fehlerquittierung durchgeführt wird (Siehe controlword, fault_reset)						
Bit 8	drive_is_moving	herstellerspezifisch						
		Dieses Bit wird – unabhängig von modes_of_operation – gesetzt, wenn sich die aktuelle Ist-Drehzahl (velocity_ actual_value) des Antriebes außerhalb des zugehörigen Toleranzfenster befindet (velocity_threshold).						
Bit 9	remote							
		Dieses Bit zeigt an, dass die Endstufe des Reglers über das CAN- Netzwerk freigegeben werden kann. Es ist gesetzt, wenn die Reglerfreigabelogik über das Objekt enable_logic entsprechend eingestellt ist.						
1).	In bisherigen CANopen	- Implementierungen wird Bit 4 (voltage_enabled) im Gegensatz zur						
	Spezifikation in der DS 402 invertiert zurückgemeldet. Daher besteht die Möglichkeit über das Objekt							

compatibility_control (siehe Kapitel 6.2) die Rückmeldung gemäß DS402 auszuwählen.

Für Kompatibilität zu früheren Firmwareversionen brauchen keine Änderungen durchgeführt werden!

Seite 195

elposition erreicht _actual_value) im window) befindet. ieb bei gesetztem
_actual_value) im window) befindet.
_actual_value) im window) befindet.
ieb bei gesetztem
2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
rgegeben wird.
ahl eranzfenster /_time).
ktiv ist.
das gesetzte Bit Es wird wieder im controlword auf auch Kapitel 8.3.
uelle Ist-Drehzahl ıgehörigen ld <i>)</i> .
zfahrt ohne Fehler
aktiv ist und die erden. Es wird o_mode im zu unbedingt auch

Bit 13		Abhängig von modes_of_operation:					
following_error		Im Profile Position Mode: Dieses Bit wird gesetzt, wenn die aktuelle Ist-Position (position_actual_value) von der Soll-Position (position_demand_value) soweit abweicht, dass die Differenz außerhalb des parametrierten Toleranzfensters liegt (following_error_window, following_error_time_out).					
	homing_error	Im Homing Mode: Dieses Bit wird gesetzt, wenn die Referenzfahrt unterbrochen wird (Halt-Bit), beide Endschalter gleichzeitig ansprechen oder die bereits zurückgelegte Endschaltersuchfahrt größer als der vorgegebene Positionierraum ist (min_position_limit, max_position_limit).					
Bit 14	manufacturer_statusbit	herstellerspezifisch					
		Die Bedeutung dieses Bits ist konfigurierbar: Es kann gesetzt werden, wenn ein beliebiges Bit des manufacturer_statusword_1 gesetzt bzw. zurückgesetzt wird. Siehe hierzu auch Kap. 7.1.5.2					
Bit 15	trigger_result	herstellerspezifisch					
		Die Bedeutung dieses Bits ist konfigurierbar: Es wird gesetzt, wenn ein Sample- Ereignis eingetreten ist und die Samplemaske entsprechend gesetzt ist. Siehe hierzu auch Kap. 6.15.					

7.1.5.2 Objekt 2000_h: manufacturer_statuswords

Um weitere Reglerzustände abbilden zu können, die nicht im – häufig zyklisch abgefragten – **statusword** vorhanden sein müssen, wurde die Objektgruppe **manufacturer_statuswords** eingeführt.

Index	2000 _h
Name	manufacturer_statuswords
Object Code	RECORD
No. of Elements	1

RECORD_MAIN Ab Firmware 3.3.x.1.

Sub-Index	01 _h
Description	manufacturer_statusword_1
Data Type	UINT32
Access	ro
PDO Mapping	yes
Units	-
Value Range	-
Default Value	-

RECORD_Eintrag Ab Firmware 3.3.x.1.

1

Bit	Wertigkeit	Name	
0	0000001 _h	is_referenced	Ab Firmware 3.3.x.1.1
1	00000002 _h	commutation_valid	Ab Firmware 3.5.x.1.1
2	00000004 _h	ready_for_enable	Ab Firmware 3.5.x.1.1
31	80000000 _h	-	

Tabelle 7.5: Bitbelegung im manufacturer_statusword_1

Bit 0	is_referenced	
		Das Bit wird gesetzt, wenn der Regler referenziert ist. Dies ist der Fall, wenn entweder eine Referenzfahrt erfolgreich durchgeführt wurde oder aufgrund des angeschlossenen Gebersystems (z.B. bei einem Absolutwertgeber) keine Referenzfahrt nötig ist.
Bit 1	commutation_valid	
		Das Bit wird gesetzt, wenn die Kommutierinformation gültig ist. Es ist inbesondere bei Gebersystemen ohne Kommutierinformation (z.B. Linearmotoren) hilfreich, weil dort die automatische Kommutierungsfindung einige Zeit in Anspruch nehmen kann. Wird dieses Bit überwacht, kann z.B. ein Timeout der Steuerung bei Freigabe des Reglers verhindert werden.
Bit 2	ready_for_enab	
		Das Bit wird gesetzt, wenn alle Bedingungen vorliegen, um den Regler freizugeben und nur noch die Reglerfreigabe selber fehlt. Folgende Bedingungen müssen vorliegen:

- Der Antrieb ist fehlerfrei
- Der Zwischenkreis ist geladen
- Die Winkelgeberauswertung ist bereit. Es sind keine Prozesse (z.B. serielle Übertragung) aktiv, die eine Freigabe verhindern
- Es ist kein blockierender Prozess aktiv (z.B. die automatische Motorparameter- Identifikation)

Mithilfe der Objekte manufacturer_status_masks und manufacturer_status_invert können ein oder mehrere Bits der manufacturer_statuswords in Bit 14 (manufacturer_ statusbit) des statusword (6041_h) eingeblendet werden. Alle Bits des manufacturer_ statusword_1 können über das korrespondierende Bit in manufacturer_status_invert_1 invertiert werden. Somit können auch Bits auf den Zustand "zurückgesetzt" überwacht werden. Nach der Invertierung werden die Bits maskiert, d.h. nur wenn das korrespondierende Bit in manufacturer_status_mask_1 gesetzt ist, wird das Bit weiter ausgewertet. Ist nach der Maskierung noch mindestens ein Bit gesetzt, wird auch Bit 14 des statusword gesetzt. Die folgende Abbildung verdeutlicht dieses beispielhaft:

	Bit	Bit	Bit	Bit	Bit							Bit	Bit	Bit	Bit	Bit		
	0	1	2	3	4							27	28	29	30	31		
	1	1	1	1	0							0	0	0	0	0	manufacturer_statusword_1	2000 _h _01 _h
				•													•	
	0	0	1	1	0							0	1	1	0	0	manufacturer_status_invert_1	200A _h _01 _h
				1	1	1												
=	1	1	0	0	0							0	1	1	0	0		
																	I	
	0	1	0	1	0							0	0	1	0	0	manufacturer_status_mask_1	2005 _{L_} 01 _h
																	•	
=	0	1	0	0	0							0	0	1	0	0		
				l	l	l											I	
														oder	-1			
	Bit	Bit	Bit															
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
	Х	Χ	Χ	Χ	Χ	Х	Χ	Χ	Х	Χ	Χ	Х	Χ	Х	1	Х	statusword	6041 <u>_</u> 00 _h

BEISPIEL

A) Bit 14 des **statusword** soll gesetzt werden, wenn der Antrieb referenziert ist. *Antrieb referenziert* ist Bit 0 des manufacturer_statusword_1

```
manufacturer_status_invert = 0x000000000
manufacturer_status_mask = 0x00000001 (Bit 0)
```

B) Bit 14 des statusword soll gesetzt werden, wenn der Antrieb keine gültige Kommutierlage hat. Gültige Kommutierlage ist Bit 1 des manufacturer_statusword_1. Dieses Bit muss invertiert werden, damit es gesetzt wird, wenn die Kommutierinformation ungültig ist:

```
manufacturer_status_invert = 0x00000002 (Bit 1)
manufacturer_status_mask = 0x00000002 (Bit 1)
```

Bit 14 des statusword soll gesetzt werden, wenn der Antrieb nicht bereit zur Freigabe ist ODER der Antrieb referenziert ist.

Gültige Kommutierlage ist Bit 2 des manufacturer_statusword_1. Antrieb referenziert ist Bit 0. Bit 2 muss invertiert werden, damit es gesetzt wird, wenn der Antrieb nicht bereit zur Freigabe ist:

```
manufacturer_status_invert = 0x00000004 (Bit 2)
manufacturer_status_mask = 0x00000005 (Bit 2, Bit 0)
```

7.1.5.3 Objekt 2005_h: manufacturer_status_masks

Mit dieser Objektgruppe wird festgelegt, welche gesetzten Bits der manufacturer_statuswords in das statusword eingeblendet werden. Siehe hierzu auch Kapitel 7.1.5.2.

Index	2005 _h
Name	manufacturer_status_masks
Object Code	RECORD
No. of Elements	1

RECORD_MAIN Ab Firmware 3.5.x.1.

Sub-Index	01 _h
Description	manufacturer_status_mask_1
Data Type	UINT32
Access	rw
PDO Mapping	yes
Units	-
Value Range	-
Default Value	0x0000000

RECORD_Eintrag Ab Firmware 3.5.x.1.

1

7.1.5.4 Objekt 200A_h: manufacturer_status_invert

Mit dieser Objektgruppe wird festgelegt, welche Bits der **manufacturer_statuswords** invertiert in das **statusword** eingeblendet werden. Siehe hierzu auch Kapitel 7.1.5.2.

Index	200A _h
Name	manufacturer_status_invert
Object Code	RECORD
No. of Elements	1

RECORD_MAIN Ab Firmware 3.5.x.1.

Sub-Index	01 _h
Description	manufacturer_status_invert_1
Data Type	UINT32
Access	rw
PDO Mapping	yes
Units	-
Value Range	-
Default Value	0x0000000

RECORD_Eintrag Ab Firmware 3.5.x.1.

7.1.6 Beschreibung der weiteren Objekte

7.1.6.1 In diesem Kapitel behandelte Objekte

Index	Objekt	Name	Тур	Attr.
605B _h	VAR	shutdown_option_code	INT16	rw
605C _h	VAR	disable_operation_option_code	INT16	rw
605A _h	VAR	quick_stop_option_code	INT16	rw
605E _h	VAR	fault_reaction_option_code	INT16	rw

7.1.6.2 Objekt 605B_h: shutdown_option_code

Mit dem Objekt **shutdown_option_code** wird vorgegeben, wie sich der Regler beim Zustandsübergang 8 (von **OPERATION ENABLE** nach **READY TO SWITCH ON)** verhält. Das Objekt zeigt das implementierte Verhalten des Reglers an. Es kann nicht verändert werden.

Index	605B _h	VAR_Eintrag
Name	shutdown_option_code	
Object Code	VAR	
Data Type	INT16	

Access	rw	VAR_Eintrag
PDO Mapping	no	., <u>_</u> ag
Units	-	
Value Range	0	
Default Value	0	

Wert	Name
0	Endstufe wird ausgeschaltet, Motor ist frei drehbar

7.1.6.3 Objekt 605Ch: disable_operation_option_code

Mit dem Objekt disable_operation_option_code wird vorgegeben, wie sich der Regler beim Zustandsübergang 5 (von OPERATION ENABLE nach SWITCHED ON) verhält. Das Objekt zeigt das implementierte Verhalten des Reglers an. Es kann nicht verändert werden.

Index	605C _h	VAR_Eintrag
Name	disable_operation_option_code	
Object Code	VAR	
Data Type	INT16	
		•
Access	rw	VAR_Eintrag
PDO Mapping	no	
Units	-	
Value Range	-1	
Default Value	-1	

Wert	Name
-1	Bremsen mit quickstop_deceleration

7.1.6.4 Objekt 605A_h: quick_stop_option_code

Mit dem Parameter quick_stop_option_code wird vorgegeben, wie sich der Regler bei einem Quick Stop verhält. Das Objekt zeigt das implementierte Verhalten des Reglers an. Es kann nicht verändert werden.

Index	605A _h	VAR_Eintrag
Name	quick_stop_option_code	
Object Code	VAR	
Data Type	INT16	
		-
Access	rw	VAR_Eintrag
PDO Mapping	no	
Units	-	
Value Range	2	
Default Value	2	

Wert	Name
2	Bremsen mit quickstop_deceleration

7.1.6.5 Objekt 605E_h: fault_reaction_option_code

Mit dem Objekt fault_reaction_option_code wird vorgegeben, wie sich der Regler bei einem Fehler (fault) verhält. Da bei der item C Serie die Fehlerreaktion vom jeweiligen Fehler abhängt, kann dieses Objekt nicht parametriert werden und gibt immer 0 zurück. Um die Fehlerreaktion der einzelnen Fehler zu verändern siehe Kapitel 6.18, Fehlermanagement.

		1
Index	605E _h	VAR_Eintrag
Name	fault_reaction_option_code	
Object Code	VAR	
Data Type	INT16	
-		<u>-</u> '
Access	rw	VAR_Eintrag
PDO Mapping	no	<u></u> ag
Units	-	
Value Range	0	
Default Value	0	

8 Betriebsarten

8.1 Einstellen der Betriebsart

8.1.1 Übersicht

Der Antriebsregler kann in eine Vielzahl von Betriebsarten versetzt werden. Nur einige sind unter CANopen detailliert spezifiziert:

momentengeregelter Betrieb profile torque modedrehzahlgeregelter Betrieb profile velocity mode

Referenzfahrt homing mode

Positionierbetrieb profile position mode

Synchrone Positionsvorgabe interpolated position mode

8.1.2 Beschreibung der Objekte

8.1.2.1 In diesem Kapitel behandelte Objekte

Index	Objekt	Name	Тур	Attr.
6060 _h	VAR	modes_of_operation	INT8	WO
6061 _h	VAR	modes_of_operation_display	INT8	ro

8.1.2.2 Objekt 6060_h: modes_of_operation

Mit dem Objekt modes_of_operation wird die Betriebsart des Reglers eingestellt.

Index	6060 _h	VAR_Eintrag
Name	modes_of_operation	
Object Code	VAR	
Data Type	INT8	

Access	rw	VAR_Eintrag
PDO Mapping	yes	<u>_</u> ag
Units	-	
Value Range	1, 3, 4, 6, 7	
Default Value	-	

Wert	Aktion
1	Profile Position Mode (Lageregler mit Positionierbetrieb)
3	Profile Velocity Mode (Drehzahlregler mit Sollwertrampe)
4	Torque Profile Mode (Momentenregler mit Sollwertrampe)
6	Homing Mode (Referenzfahrt)
7	Interpolated Position Mode

ij

Die aktuelle Betriebsart kann nur im Objekt **modes_of_operation_display** gelesen werden! Da ein Wechsel der Betriebsart etwas Zeit in Anspruch nehmen kann, **muss** solange gewartet werden, bis der neu ausgewählte Modus im Objekt **modes_of_operation_display** erscheint.

8.1.2.3 Objekt 6061_{h:} modes_of_operation_display

Im Objekt modes_of_operation_display kann die aktuelle Betriebsart des Reglers gelesen werden. Wird eine Betriebsart über das Objekt 6060h eingestellt, werden neben der eigentlichen Betriebsart auch die Sollwert- Aufschaltungen (Sollwert- Selektor) vorgenommen, die für einen Betrieb des Reglers unter CANopen nötig sind. Dies sind

	Profile Velocity Mode	Profile Torque Mode
Selektor A	Drehzahl-Sollwert (Feldbus 1)	Drehmoment- Sollwert (Feldbus 1)
Selektor B	Ggf. Momentenbegrenzung	inaktiv
Selektor C	Drehzahl-Sollwert (Synchrondrehz.)	inaktiv

Außerdem wird die Sollwert- Rampe grundsätzlich eingeschaltet. Nur wenn diese Aufschaltungen in der genannten Weise eingestellt sind, wird auch eine der CANopen- Betriebsarten zurückgegeben. Werden dieses Einstellungen z.B. mit dem item Motion Soft™ geändert, wird eine jeweilige "User"- Betriebsart zurückgegeben, um anzuzeigen, dass die Selektoren verändert wurden.

Index	6061 _h	VAR_Eintrag
Name	modes_of_operation_display	
Object Code	VAR	
Data Type	INT8	

Access	ro	VA
PDO Mapping	yes	
Units	-	
Value Range	-1, 1, 3, 4, 6, 7	
Default Value	3	

VAR_Eintrag

Wert	Aktion
-1	Unbekannte Betriebsart / Betriebsartenwechsel
-11	User Position Mode
-13	User Velocity Mode
-14	User Torque Mode
1	Profile Position Mode (Lageregler mit Positionierbetrieb)
3	Profile Velocity Mode (Drehzahlregler mit Sollwertrampe)
4	Torque Profile Mode (Momentenregler mit Sollwertrampe)
6	Homing Mode (Referenzfahrt)
7	Interpolated Position Mode

ĭ

Die Betriebsart kann nur über das Objekt **modes_of_operation** gesetzt werden. Da ein Wechsel der Betriebsart etwas Zeit in Anspruch nehmen kann, **muss** solange gewartet werden, bis der neu ausgewählte Modus im Objekt **modes_of_operation_display** erscheint. Während dieses Zeitraumes kann kurzzeitig "ungültige Betriebsart" (-1) angezeigt werden.

8.2 Betriebsart Referenzfahrt (Homing Mode)

8.2.1 Übersicht

In diesem Kapitel wird beschrieben, wie der Antriebsregler die Anfangsposition sucht (auch Bezugspunkt, Referenzpunkt oder Nullpunkt genannt). Es gibt verschiedene Methoden diese Position zu bestimmen, wobei entweder die Endschalter am Ende des Positionierbereiches benutzt werden können oder aber ein Referenzschalter (Nullpunkt-Schalter) innerhalb des möglichen Verfahrweges. Um eine möglichst große Reproduzierbarkeit zu erreichen, kann bei einigen Methoden der Nullimpuls des verwendeten Winkelgebers (Resolver, Inkrementalgeber etc.) mit einbezogen werden.

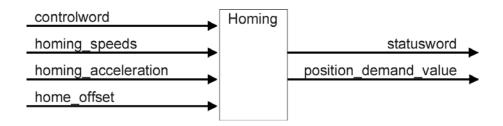


Abbildung 8.1: Die Referenzfahrt

Der Benutzer kann die Geschwindigkeit, Beschleunigung und die Art der Referenzfahrt bestimmen. Mit dem Objekt home_offset kann die Nullposition des Antriebs an eine beliebige Stelle verschoben werden. Es gibt zwei Referenzfahrgeschwindigkeiten. Die höhere Suchgeschwindigkeit (speed_during_search_for_switch) wird benutzt, um den Endschalter bzw. den Referenzschalter zu finden. Um dann die Position der betreffenden Schaltflanke exakt bestimmen zu können, wird auf die Kriechgeschwindigkeit (speed_during_search_for_zero) umgeschaltet.

Soll der Antrieb nicht neu referenziert werden, sondern lediglich die Position auf einen vorgegebenen Wert gesetzt werden, kann das Objekt 2030_h (set_position_absolute) benutzt werden. Siehe hierzu Kap. 6.7.2.15

Die Fahrt auf die Nullposition ist unter CANopen in der Regel nicht Bestandteil der Referenzfahrt. Sind dem Regler alle erforderlichen Größen bekannt (z.B. weil er die Lage des Nullimpulses bereits kennt), wird keine physikalische Bewegung ausgeführt. Dieses Verhalten kann durch das Objekt 6510_h_FO_h (compatibility_control, siehe Kap. 6.2)

geändert werden, so dass immer eine Fahrt auf Null ausgeführt wird.

8.2.2 Beschreibung der Objekte

8.2.2.1 In diesem Kapitel behandelte Objekte

Index	Objekt	Name	Тур	Attribute
607C _h	VAR	home_offset	INT32	rw
6098 _h	VAR	homing_method	INT8	rw
6099 _h	ARRAY	homing_speeds	UINT32	rw
609A _h	VAR	homing_acceleration	UINT32	rw
2045 _h	VAR	homing_timeout	UINT16	rw

8.2.2.2 Betroffene Objekte aus anderen Kapiteln

Index	Objekt	Name	Тур	Kapitel
6040 _h	VAR	controlword	UINT16	6.18 Gerätesteuerung
6041 _h	VAR	statusword	UINT16	6.18 Gerätesteuerung

8.2.2.3 Objekt 607C_h: home_offset

Das Objekt **home_offset** legt die Verschiebung der Nullposition gegenüber der ermittelten Referenzposition fest.

Abbildung 8.2: Home Offset

Index	607C _h	VAR_Eintrag
Name	home_offset	
Object Code	VAR	
Data Type	INT32	

Access	rw	١
PDO Mapping	yes	
Units	position units	
Value Range	-	1
Default Value	0	

VAR Eintrag

8.2.2.4 Objekt 6098_h: homing_method

Für eine Referenzfahrt werden eine Reihe unterschiedlicher Methoden bereitgestellt. Über das Objekt homing_method kann die für die Applikation benötigte Variante ausgewählt werden. Es gibt vier mögliche Referenzfahrt-Signale: den negativen und positiven Endschalter, den Referenzschalter und den (periodischen) Nullimpuls des Winkelgebers. Außerdem kann der Regler sich ganz ohne zusätzliches Signal auf den negativen oder positiven Anschlag referenzieren. Wenn über das Objekt homing_method eine Methode zum Referenzieren bestimmt wird, so werden hiermit folgende Einstellungen gemacht:

- Die Referenzquelle (neg./pos. Endschalter, der Referenzschalter, neg. / pos. Anschlag)
- Die Richtung und der Ablauf der Referenzfahrt
- Die Art der Auswertung des Nullimpulses vom verwendeten Winkelgeber

Index	6098 _n	VAR_Eintrag
Name	homing_method	
Object Code	VAR	
Data Type	INT8	

Access	rw	VAR E
PDO Mapping	yes	1 ** ** *
Units	-	
Value Range	-18, -17, -2, -1, 1, 2, 7, 11, 17, 18, 23, 27, 32, 33, 34, 35	
Default Value	17	

VAR_Eintrag	
_ 0	

Wert	Richtung	Ziel	Bezugspunkt für Null	DS402
-18	positiv	Anschlag	Anschlag	-18
-17	negativ	Anschlag	Anschlag	-17

-2	positiv	Anschlag	Nullimpuls	-2
-1	negativ	Anschlag	Nullimpuls	-1
1	negativ	Endschalter	Nullimpuls	1
2	positiv	Endschalter	Nullimpuls	2
7	positiv	Referenzschalter	Nullimpuls	7
11	negativ	Referenzschalter	Nullimpuls	11
17	negativ	Endschalter	Endschalter	17
18	positiv	Endschalter	Endschalter	18
23	positiv	Referenzschalter	Referenzschalter	23
27	negativ	Referenzschalter	Referenzschalter	27
32	negativ	Nullimpuls	Nullimpuls	33
33	positiv	Nullimpuls	Nullimpuls	34
34		Keine Fahrt	Aktuelle Ist-Position	35

In bisherigen CANopen- Implementierungen sind die Referenzfahrt- Methoden 32, 33, 34 und 35 nicht gemäß DS402 zugeordnet. Daher besteht die Möglichkeit über das Objekt **compatibility_control** (siehe Kapitel 6.2) die Zuordnung gemäß DS402 auszuwählen.

In diesem Fall sind die kursiv gedruckten Methoden- Nummern zu verwenden.

Für Kompatibilität zu früheren Versionen brauchen keine Änderungen durchgeführt werden und es können die bisherigen Nummern verwendet werden!

Die homing_method kann nur verstellt werden, wenn die Referenzfahrt nicht aktiv ist. Ansonsten wird die Fehlermeldung "Data cannot be transferred or stored to the application because of the present device state" zurückgegeben.

Der Ablauf der einzelnen Methoden ist in Kapitel 8.2.3 ausführlich erläutert.

8.2.2.5 Objekt 6099_h: homing_speeds

Dieses Objekt bestimmt die Geschwindigkeiten, die während der Referenzfahrt benutzt werden.

Index	6099 _h	
Name	homing_speeds	
Object Code	ARRAY	1
No. of Elements	2	1
Data Type	UINT32]

ARRAY_MAIN

Sub-Index	01 _h
Description	speed_during_search_for_switch
Access	rw
PDO Mapping	yes
Units	speed units
Value Range	-
Default Value	100 min ⁻¹

ARRAY_Eintrag

Sub-Index	02 _h
Description	speed_during_search_for_zero
Access	rw
PDO Mapping	yes
Units	speed units
Value Range	-
Default Value	10 min ⁻¹

ARRAY_Eintrag

Wird Bit 6 im Objekt **compatibility_control**, (siehe Kap. 6.2) gesetzt, wird nach der Referenzfahrt eine Fahrt auf Null durchgeführt.

Ist dieses Bit gesetzt und das Objekt **speed_during_search_for_switch** wird beschrieben, wird sowohl die Geschwindigkeit für die Schaltersuche, als auch die Geschwindigkeit für die Fahrt auf Null beschrieben.

8.2.2.6 Objekt 609A_h: homing_acceleration

Das Objekt homing_acceleration legt die Beschleunigung fest, die während der Referenzfahrt für alle Beschleunigungs- und Bremsvorgänge verwendet wird.

Index	609A _h	VAR_Eintrag
Name	homing_acceleration	
Object Code	VAR	
Data Type	UINT32	

Access	rw	VAR_Eintrag
PDO Mapping	yes	<u>_</u> ag
Units	acceleration units	
Value Range	-	
Default Value	1000 min ⁻¹ / s	

8.2.2.7 Objekt 2045_h: homing_timeout

Die Referenzfahrt kann auf ihre maximale Ausführungszeit überwacht werden. Dazu kann mit dem Objekt **homing_timeout** die maximale Ausführungszeit angegeben werden. Wird diese Zeit überschritten, ohne dass die Referenzfahrt beendet wurde, wird der Fehler 11-3 ausgelöst.

Index	2045 _h
Name	homing_timeout
Object Code	VAR
Data Type	UINT16

VAR_Eintrag Ab Firmware 3.2.0.

Access	rw	١,
PDO Mapping	no	
Units	ms	
Value Range	0 (aus), 1 65535	
Default Value	60000	

VAR_Eintrag

8.2.3 Referenzfahrt-Abläufe

Die verschiedenen Referenzfahrt-Methoden sind in den folgenden Abbildungen dargestellt. Die eingekreisten Nummern entsprechen dem im Objekt homing_method einzutragenden Code.

8.2.3.1 Methode 1: Negativer Endschalter mit Nullimpulsauswertung

Bei dieser Methode bewegt sich der Antrieb zunächst relativ schnell in negativer Richtung, bis er den negativen Endschalter erreicht. Dieses wird im Diagramm durch die steigende Flanke dargestellt. Danach fährt der Antrieb langsam zurück und sucht die genaue Position des Endschalters. Die Nullposition bezieht sich auf den ersten Nullimpuls des Winkelgebers in positiver Richtung vom Endschalter.

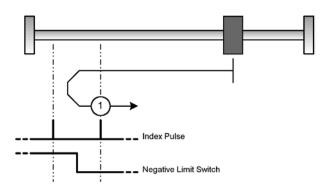


Abbildung 8.3: Referenzfahrt auf den negativen Endschalter mit Auswertung des Nullimpulses

8.2.3.2 Methode 2: Positiver Endschalter mit Nullimpulsauswertung

Bei dieser Methode bewegt sich der Antrieb zunächst relativ schnell in positiver Richtung, bis er den positiven Endschalter erreicht. Dieses wird im Diagramm durch die steigende Flanke dargestellt. Danach fährt der Antrieb langsam zurück und sucht die genaue Position des Endschalters. Die Nullposition bezieht sich auf den ersten Nullimpuls des Winkelgebers in negativer Richtung vom Endschalter.

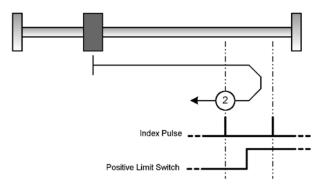


Abbildung 8.4: Referenzfahrt auf den positiven Endschalter mit Auswertung des Nullimpulses

8.2.3.3 Methoden 7 u. 11: Referenzschalter und Nullimpulsauswertung

Diese beiden Methoden nutzen den Referenzschalter, der nur über einen Teil der Strecke aktiv ist. Diese Referenzmethoden bieten sich besonders für Rundachsen-Applikationen an, wo der Referenzschalter einmal pro Umdrehung aktiviert wird.

Bei der Methode 7 bewegt sich der Antrieb zunächst in positiver und bei Methode 11 in negativer Richtung. Abhängig von der Fahrtrichtung bezieht sich die Nullposition auf den ersten Nullimpuls in negativer oder positiver Richtung vom Referenzschalter. Dieses ist in den beiden folgenden Abbildungen ersichtlich.

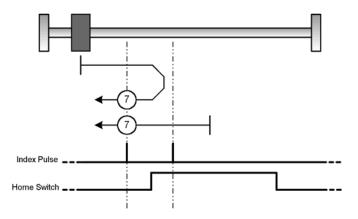


Abbildung 8.5: Referenzfahrt auf den Referenzschalter mit Auswertung des Nullimpulses bei positiver Anfangsbewegung

j

Bei Referenzfahrten auf den Referenzschalter dienen die Endschalter zunächst zur Suchrichtungsumkehr. Wird im Anschluss der gegenüberliegende Endschalter erreicht, wird ein Fehler ausgelöst.

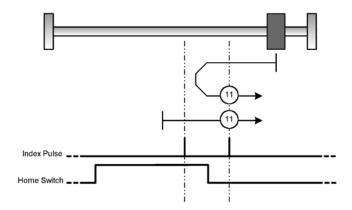


Abbildung 8.6: Referenzfahrt auf den Referenzschalter mit Auswertung des Nullimpulses bei negativer Anfangsbewegung

Methode 17: Referenzfahrt auf den negativen Endschalter

Bei dieser Methode bewegt sich der Antrieb zunächst relativ schnell in negativer Richtung, bis er den negativen Endschalter erreicht. Dieses wird im Diagramm durch die steigende Flanke dargestellt. Danach fährt der Antrieb langsam zurück und sucht die genaue Position des Endschalters. Die Nullposition bezieht sich auf die fallende Flanke vom negativen Endschalter.

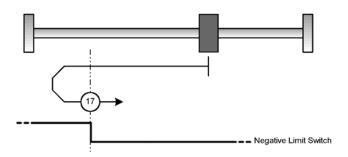


Abbildung 8.7: Referenzfahrt auf den negativen Endschalter

8.2.3.4 Methode 18: Referenzfahrt auf den positiven Endschalter

Bei dieser Methode bewegt sich der Antrieb zunächst relativ schnell in positiver Richtung, bis er den positiven Endschalter erreicht. Dieses wird im Diagramm durch die steigende Flanke dargestellt. Danach fährt der Antrieb langsam zurück und sucht die genaue Position des Endschalters. Die Nullposition bezieht sich auf die fallende Flanke vom positiven Endschalter.

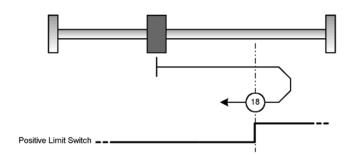


Abbildung 8.8: Referenzfahrt auf den positiven Endschalter

8.2.3.5 Methoden 23 und 27: Referenzfahrt auf den Referenzschalter

Diese beiden Methoden nutzen den Referenzschalter, der nur über einen Teil der Strecke aktiv ist. Diese Referenzmethode bietet sich besonders für Rundachsen-Applikationen an, wo der Referenzschalter einmal pro Umdrehung aktiviert wird.

Bei der Methode 23 bewegt sich der Antrieb zunächst in positiver und bei Methode 27 in negativer Richtung. Die Nullposition bezieht sich auf die Flanke vom Referenzschalter. Dieses ist in den beiden folgenden Abbildungen ersichtlich.



Abbildung 8.9: Referenzfahrt auf den Referenzschalter bei positiver Anfangsbewegung

ij

Bei Referenzfahrten auf den Referenzschalter dienen die Endschalter zunächst zur Suchrichtungsumkehr. Wird im Anschluss der gegenüberliegende Endschalter erreicht, wird ein Fehler ausgelöst.

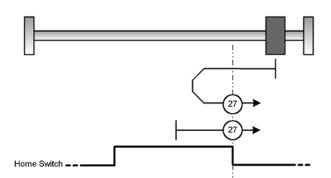


Abbildung 8.10: Referenzfahrt auf den Referenzschalter bei negativer Anfangsbewegung

8.2.3.6 Methode –1: negativer Anschlag mit Nullimpulsauswertung

Bei dieser Methode bewegt sich der Antrieb in negativer Richtung, bis er den Anschlag erreicht. Hierbei steigt das l²t-Integral des Motors auf maximal 90%. Der Anschlag muss mechanisch so dimensioniert sein, dass er bei dem parametrierten Maximalstrom keinen Schaden nimmt. Die Nullposition bezieht sich auf den ersten Nullimpuls des Winkelgebers in positiver Richtung vom Anschlag.

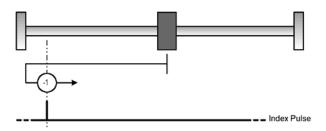


Abbildung 8.11: Referenzfahrt auf den negativen Anschlag mit Auswertung des Nullimpulses

8.2.3.7 Methode –2: positiver Anschlag mit Nullimpulsauswertung

Bei dieser Methode bewegt sich der Antrieb in positiver Richtung, bis er den Anschlag erreicht. Hierbei steigt das l²t-Integral des Motors auf maximal 90%. Der Anschlag muss mechanisch so dimensioniert sein, dass er bei dem parametrierten Maximalstrom keinen Schaden nimmt. Die Nullposition bezieht sich auf den ersten Nullimpuls des Winkelgebers in negativer Richtung vom Anschlag.

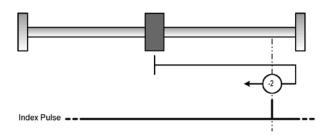


Abbildung 8.12: Referenzfahrt auf den positiven Anschlag mit Auswertung des Nullimpulses

8.2.3.8 Methode –17: Referenzfahrt auf den negativen Anschlag

Bei dieser Methode bewegt sich der Antrieb in negativer Richtung, bis er den Anschlag erreicht. Hierbei steigt das l²t-Integral des Motors auf maximal 90%. Der Anschlag muss mechanisch so dimensioniert sein, dass er bei dem parametrierten Maximalstrom keinen Schaden nimmt. Die Nullposition bezieht sich direkt auf den Anschlag.

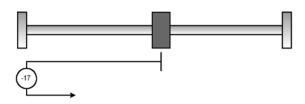


Abbildung 8.13: Referenzfahrt auf den negativen Anschlag

8.2.3.9 Methode –18: Referenzfahrt auf den positiven Anschlag

Bei dieser Methode bewegt sich der Antrieb in positiver Richtung, bis er den Anschlag erreicht. Hierbei steigt das l²t-Integral des Motors auf maximal 90%. Der Anschlag muss mechanisch so dimensioniert sein, dass er bei dem parametrierten Maximalstrom keinen Schaden nimmt. Die Nullposition bezieht sich direkt auf den Anschlag.



Abbildung 8.14: Referenzfahrt auf den positiven Anschlag

8.2.3.10 Methoden 32 und 33: Referenzfahrt auf den Nullimpuls

Bei den Methoden 32 (*33 gemäß DS402*) und 33 (*34 gemäß DS402*) ist die Richtung der Referenzfahrt negativ bzw. positiv. Die Nullposition bezieht sich auf den ersten Nullimpuls vom Winkelgeber in Suchrichtung.

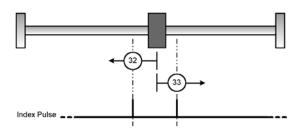


Abbildung 8.15: Referenzfahrt nur auf den Nullimpuls bezogen

8.2.3.11 Methode 34: Referenzfahrt auf die aktuelle Position

Bei der Methode 34 (*35 gemäß DS402*) wird die Nullposition auf die aktuelle Position bezogen. Soll der Antrieb nicht neu referenziert werden, sondern lediglich die Position auf einen vorgegebenen Wert gesetzt werden, kann das Objekt **2030**_h (set_position_absolute) benutzt werden. Siehe hierzu Kap. 6.7.2.15

8.2.4 Steuerung der Referenzfahrt

Die Referenzfahrt wird durch das **controlword** / **statusword** gesteuert und überwacht. Das Starten erfolgt durch Setzen des Bit 4 im **controlword**. Der erfolgreiche Abschluss der Fahrt wird durch ein gesetztes Bit 12 im Objekt **statusword** angezeigt. Ein gesetztes Bit 13 im Objekt **statusword** zeigt an, dass während der Referenzfahrt ein Fehler aufgetreten ist. Die Fehlerursache kann über die Objekte **error_register** und **pre_defined_error_field** bestimmt werden.

Bit 4	Bedeutung
0	Referenzfahrt ist nicht aktiv
$0 \rightarrow 1$	Referenzfahrt starten
1	Referenzfahrt ist aktiv
$1 \rightarrow 0$	Referenzfahrt unterbrechen

Tabelle 8.1: Beschreibung der Bits im controlword

Bit 13	Bit 12	Bedeutung
0	0	Referenzfahrt ist noch nicht fertig
0	1	Referenzfahrt erfolgreich durchgeführt
1	0	Referenzfahrt nicht erfolgreich durchgeführt
1	1	verbotener Zustand

Tabelle 8.2: Beschreibung der Bits im statusword

8.3 Betriebsart Positionieren (Profile Position Mode)

8.3.1 Übersicht

Die Struktur dieser Betriebsart wird in Abbildung 8.16 ersichtlich:

Die Zielposition (target_position) wird dem Fahrkurven-Generator übergeben. Dieser erzeugt einen Lage-Sollwert (position_demand_value) für den Lageregler, der in dem Kapitel Lageregler beschrieben wird (Position Control Function, Kapitel 6.6.2.2). Diese zwei Funktionsblöcke können unabhängig voneinander eingestellt werden.

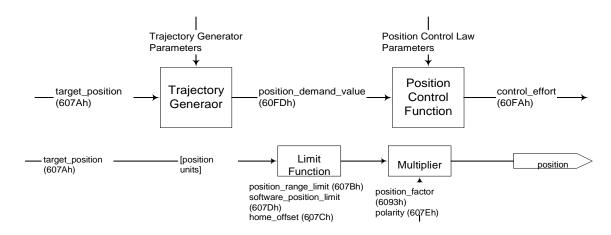


Abbildung 8.16: Fahrkurven-Generator und Lageregler

Alle Eingangsgrößen des Fahrkurven-Generators werden mit den Größen der Factor-Group (s. Kap. 6.2) in die internen Einheiten des Reglers umgerechnet. Die internen Größen werden hier mit einem Sternchen gekennzeichnet und werden vom Anwender in der Regel nicht benötigt.

8.3.2 Beschreibung der Objekte

8.3.2.1 In diesem Kapitel behandelte Objekte

Index	Objekt	Name	Тур	Attr.
607A _h	VAR	target_position	INT32	rw
6081 _h	VAR	profile_velocity	UINT32	rw
6082 _h	VAR	end_velocity	UINT32	rw
6083 _h	VAR	profile_acceleration	UINT32	rw
6084 _h	VAR	profile_deceleration	UINT32	rw
6085 _h	VAR	quick_stop_deceleration	UINT32	rw
6086 _h	VAR	motion_profile_type	INT16	rw

8.3.2.2 Betroffene Objekte aus anderen Kapiteln

Index	Objekt	Name	Тур	Kapitel
6040 _h	VAR	controlword	INT16	6.18 Gerätesteuerung
6041 _h	VAR	statusword	UINT16	6.18 Gerätesteuerung
605A _h	VAR	quick_stop_option_code	INT16	6.18 Gerätesteuerung
607E _h	VAR	polarity	UINT8	6.2 Umrechnungsfaktoren
6093 _h	ARRAY	position_factor	UINT32	6.2 Umrechnungsfaktoren
6094 _h	ARRAY	velocity_encoder_factor	UINT32	6.2 Umrechnungsfaktoren
6097 _h	ARRAY	acceleration_factor	UINT32	6.2 Umrechnungsfaktoren

8.3.2.3 Objekt 607A_h: target_position

Das Objekt target_position (Zielposition) bestimmt, an welche Position der Antriebsregler fahren soll. Dabei muss die aktuelle Einstellung der Geschwindigkeit, der Beschleunigung, der Bremsverzögerung und die Art des Fahrprofils (motion_profile_type) etc. berücksichtigt werden. Die Zielposition (target_position) wird entweder als absolute oder relative Angabe interpretiert (controlword, Bit 6).

Index	607A _h	VAR_Eintrag
Name	target_position	
Object Code	VAR	
Data Type	INT32	

Access	rw
PDO Mapping	yes
Units	position units
Value Range	-
Default Value	0

VAR_Eintrag

8.3.2.4 Objekt 6081_h: profile_velocity

Das Objekt **profile_velocity** gibt die Geschwindigkeit an, die normalerweise während einer Positionierung am Ende der Beschleunigungsrampe erreicht wird. Das Objekt **profile_velocity** wird in **speed_units** angegeben.

Index	6081 _h	VAR_Eintrag
Name	profile_velocity	
Object Code	VAR	
Data Type	UINT32	
		•
Access	rw	VAR_Eintrag
PDO Mapping	yes	
Units	speed_units	
Value Range	-	

8.3.2.5 Objekt 6082_h: end_velocity

1000

Default Value

Das Objekt **end_velocity** (Endgeschwindigkeit) definiert die Geschwindigkeit, die der Antrieb haben muss, wenn er die Zielposition (**target_position**) erreicht. Normalerweise ist dieses Objekt auf Null zu setzen, damit der Regler beim Erreichen der Zielposition (**target_position**) stoppt. Für lückenlose Positionierungen kann eine von Null abweichende Geschwindigkeit vorgegeben werden. Das Objekt **end_velocity** wird in denselben Einheiten wie das Objekt **profile_velocity** angegeben.

Index	6082 _h	VAR_Eintrag
Name	end_velocity	
Object Code	VAR	
Data Type	UINT32	
		-
Access	rw	VAR_Eintrag
PDO Mapping	yes	<u></u> ag
Units	speed units	
Value Range	-	
Default Value	0	

8.3.2.6 Objekt 6083_h: profile_acceleration

Das Objekt **profile_acceleration** gibt die Beschleunigung an, mit der auf den Sollwert beschleunigt. Es wird in benutzerdefinierten Beschleunigungseinheiten (acceleration units) angegeben. (siehe Kapitel 6.2 Factor Group).

Index	6083 _h	VAR_Eintrag
Name	profile_acceleration	
Object Code	VAR	
Data Type	UINT32	

Access	rw	١,
PDO Mapping	yes	
Units	acceleration units	
Value Range	-	
Default Value	10000 min ⁻¹ /s	

VAR_Eintrag

8.3.2.7 Objekt 6084_h: profile_deceleration

Das Objekt **profile_deceleration** gibt die Beschleunigung an, mit der gebremst wird. Es wird in benutzerdefinierten Beschleunigungseinheiten (acceleration units) angegeben. (siehe Kapitel 6.2 Factor Group).

Index	6084 _h	VAR_Eintrag
Name	profile_deceleration	
Object Code	VAR	
Data Type	UINT32	

Access	rw	VAR_Eintrag
PDO Mapping	yes	VAN_EIIIII ay
Units	acceleration units	
Value Range	-	
Default Value	10000 min ⁻¹ /s	

8.3.2.8 Objekt 6085_h: quick_stop_deceleration

Das Objekt quick_stop_deceleration gibt an, mit welcher Bremsverzögerung der Motor stoppt, wenn ein Quick Stop ausgeführt wird (siehe Kapitel 7.1.2.2). Das Objekt quick_stop_deceleration wird in derselben Einheit wie das Objekt profile_deceleration angegeben.

Index	6085 _h	VAR_Eintrag
Name	quick_stop_deceleration	
Object Code	VAR	
Data Type	UINT32	

Access	rw	
PDO Mapping	yes	
Units	acceleration units	Ī
Value Range	-	Ī
Default Value	14100 min ⁻¹ /s	Ī

VAR_Eintrag

8.3.2.9 Objekt 6086_h: motion_profile_type

Das Objekt motion_profile_type wird verwendet, um die Art des Positionierprofils auszuwählen.

Index	6086 _h	VAR_Eintrag
Name	motion_profile_type	
Object Code	VAR	
Data Type	INT16	

Access	rw	l۱
PDO Mapping	yes	
Units	-	
Value Range	0, 2	
Default Value	0	

VAR_Eintrag

Wert	Kurvenform	
0	Lineare Rampe	
2	Ruckfreie Rampe	Ab Firmware 3.1.0.1.1

8.3.3 Funktionsbeschreibung

Es gibt zwei Möglichkeiten eine Zielposition an den Regler zu übergeben:

Einfacher Fahrauftrag

Wenn der Regler eine Zielposition erreicht hat, signalisiert er dies dem Host mit dem Bit target_reached (Bit 10 im Objekt statusword). In dieser Betriebsart stoppt der Regler, wenn er das Ziel erreicht hat.

Folge von Fahraufträgen

Nachdem der Regler ein Ziel erreicht hat, beginnt er sofort das nächste Ziel anzufahren. Dieser Übergang kann fließend erfolgen, ohne dass der Regler zwischendurch zum Stillstand kommt.

Diese beiden Methoden werden durch die Bits new_set_point und change_set_immediatly in dem Objekt controlword und set_point_acknowledge in dem Objekt statusword kontrolliert. Diese Bits stehen in einem Frage-Antwort-Verhältnis zueinander. Hierdurch wird es möglich, einen Fahrauftrag vorzubereiten, während ein anderer noch läuft.

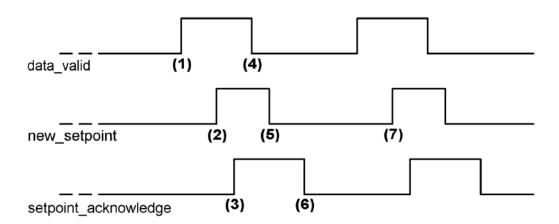


Abbildung 8.17: Fahrauftrag-Übertragung von einem Host

In Abbildung 8.17 können Sie sehen, wie der Host und der Regler über den CAN-Bus miteinander kommunizieren:

Zuerst werden die Positionierdaten (Zielposition, Fahrgeschwindigkeit, Endgeschwindigkeit und die Beschleunigung) an den Regler übertragen. Wenn der Positionierdatensatz vollständig eingeschrieben ist (1), kann der Host die Positionierung starten, indem er das Bit new_set_point im controlword auf "1" setzt (2). Nachdem der Regler die neuen Daten erkannt und in seinen Puffer übernommen hat, meldet er dies dem Host durch das Setzen des Bits set_point_acknowledge im statusword (3).

Daraufhin kann der Host beginnen, einen neuen Positionierdatensatz in den Regler einzuschreiben (4) und das Bit **new_set_point** wieder zu löschen (5). Erst wenn der Regler einen neuen Fahrauftrag akzeptieren kann (6), signalisiert er dies durch eine "0" im **set_point_acknowledge**-Bit,. Vorher darf vom Host keine neue Positionierung gestartet werden (7).

In Abbildung 8.18 wird eine neue Positionierung erst gestartet, nachdem die vorherige vollständig abgeschlossen wurde. Der Host wertet hierzu das Bit target_reached im Objekt statusword aus.

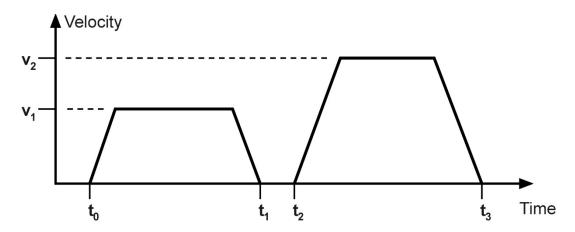


Abbildung 8.18: Einfacher Fahrauftrag

In Abbildung 8.19 wird eine neue Positionierung bereits gestartet, während sich die Vorherige noch in Bearbeitung befindet. Der Host übergibt hierzu dem Regler das nachfolgende Ziel schon dann, wenn dieser mit dem Löschen des Bits set_point_acknowledge signalisiert, dass er den Puffer gelesen und die zugehörige Positionierung gestartet hat. Die Positionierungen werden auf diese Weise nahtlos aneinander gereiht. Damit der Regler zwischen den einzelnen Positionierungen nicht jedes Mal kurzzeitig auf Null abbremst, sollte für diese Betriebsart das Objekt end_velocity mit dem gleichen Wert wie das Objekt profile_velocity beschrieben werden.

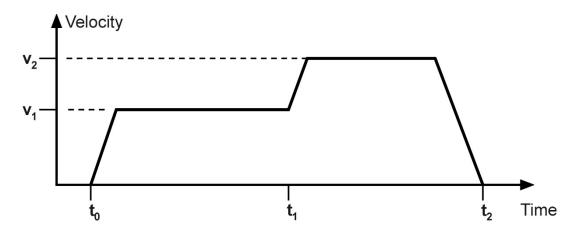


Abbildung 8.19: Lückenlose Folge von Fahraufträgen

Wenn im **controlword** neben dem Bit **new_set_point** auch das Bit **change_set_immediately** auf "1" gesetzt wird, weist der Host den Regler damit an, *sofort* den neuen Fahrauftrag zu beginnen. Ein bereits in Bearbeitung befindlicher Fahrauftrag wird in diesem Fall abgebrochen.

8.4 Interpolated Position Mode

8.4.1 Übersicht

Der Interpolated Position Mode (IP) ermöglicht die Vorgabe von Lagesollwerten in einer mehrachsigen Anwendung des Reglers. Dazu werden in einem festen Zeitraster (Synchronisations-Intervall) Synchronisations-Telegramme (SYNC) und Lagesollwerte von einer übergeordneten Steuerung vorgegeben. Da in der Regel das Intervall größer als ein Lagereglerzyklus ist, interpoliert der Regler selbständig die Datenwerte zwischen zwei vorgegebenen Positionswerten, wie in der folgenden Grafik skizziert.

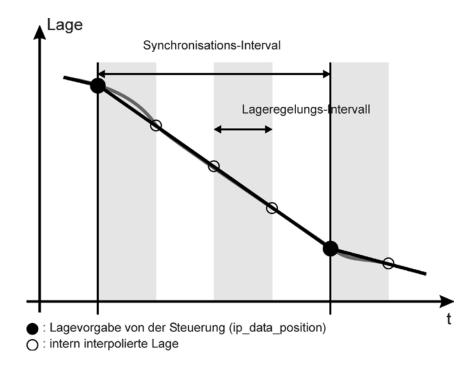


Abbildung 8.20: Fahrauftrag Lineare Interpolation zwischen zwei Datenwerten

Im Folgenden sind zunächst die für den interpolated position mode benötigten Objekte beschrieben. In einer anschließenden Funktionsbeschreibung wird umfassend auf die Aktivierung und die Reihenfolge der Parametrierung eingegangen.

8.4.2 Beschreibung der Objekte

8.4.2.1 In diesem Kapitel behandelte Objekte

Index	Objekt	Name	Тур	Attr.
60C0 _h	VAR	interpolation_submode_select	INT16	rw
60C1 _h	REC	interpolation_data_record		rw
60C2 _h	REC	interpolation_time_period		rw
60C3 _h	ARRAY	interpolation_sync_definition	UINT8	rw
60C4 _h	REC	interpolation_data_configuration		rw

8.4.2.2 Betroffene Objekte aus anderen Kapiteln

Index	Objekt	Name	Тур	Kapitel
6040 _h	VAR	controlword	INT16	6.18 Gerätesteuerung
6041 _h	VAR	statusword	UINT16	6.18 Gerätesteuerung
6093 _h	ARRAY	position_factor	UINT32	6.2 Umrechnungsfaktoren
6094 _h	ARRAY	velocity_encoder_factor	UINT32	6.2 Umrechnungsfaktoren
6097 _h	ARRAY	acceleration_factor	UINT32	6.2 Umrechnungsfaktoren

8.4.2.3 Objekt 60CO_h: interpolation_submode_select

Über das Objekt interpolation_submode_select wird der Typ der Interpolation festgelegt. Zur Zeit ist nur die herstellerspezifische Variante "Lineare Interpolation ohne Puffer" verfügbar.

Index	60CO _h	VAR_Eintrag
Name	interpolation_submode_select	
Object Code	VAR	
Data Type	INT16	

Access	rw	VAR_Eintrag
PDO Mapping	yes	
Units	-	
Value Range	-2	
Default Value	-2	

Wert	Interpolationstyp
-2	Lineare Interpolation ohne Puffer

8.4.2.4 Objekt 60C1_h: interpolation_data_record

Der Objekt-Record interpolation_data_record repräsentiert den eigentlichen Datensatz. Er besteht aus einem Eintrag für den Lagewert (ip_data_position) und einem Steuerwort (ip_data_controlword), welches angibt, ob der Lagewert absolut oder relativ zu interpretieren ist. Die Angabe des Steuerworts ist optional. Wird er nicht angegeben, wird der Lagewert als absolut interpretiert. Soll das Steuerwort mit angegeben werden, muss aus Gründen der Datenkonsistenz zuerst Subindex 2 (ip_data_controlword) und anschließend Subindex 1 (ip_data_position) geschrieben werden, da intern die Datenübernahme mit Schreibzugriff auf ip_data_position ausgelöst wird.

Index	60C1 _h	RECORD_MAIN
Name	interpolation_data_record	
Object Code	RECORD	
No. of Elements	2	

Sub-Index	01 _h
Description	ip_data_position
Data Type	INT32
Access	rw
PDO Mapping	yes
Units	position units
Value Range	-
Default Value	-

RECORD_Eintrag

Sub-Index	02 _h
Description	ip_data_controlword
Data Type	UINT8
Access	rw
PDO Mapping	yes
Units	-
Value Range	0, 1
Default Value	0

RECORD_Eintrag

Wert	ip_data_position ist
0	Absolute Position
1	Relative Entfernung

Die interne Datenübernahme erfolgt bei Schreibzugriff auf Subindex 1. Soll außerdem Subindex 2 verwendet werden, muss dieser vor Subindex 1 beschrieben werden.

8.4.2.5 Objekt 60C2_h: interpolation_time_period

Über den Objekt-Record interpolation_time_period kann das Synchronisations-Intervall eingestellt werden. Über ip_time_index wird die Einheit (ms oder 1/10 ms) des Intervalls festgelegt, welches über ip_time_units parametriert wird. Zur Synchronisation wird die komplette Reglerkaskade (Strom-, Drehzahlund Lageregler) auf den externen Takt aufsynchronisiert. Die Änderung des Synchronisationsintervalls

wird daher nur nach einem Reset wirksam. Soll das Interpolationsintervall über den CAN-Bus geändert werden, muss daher der Parametersatz gesichert (siehe Kapitel 0) und ein Reset ausgeführt werden (siehe Kapitel 5.6), damit das neue Synchronisations-Intervall wirksam wird. Das Synchronisations-Intervall muss exakt eingehalten werden.

Index	60C2 _h
Name	interpolation_time_period
Object Code	RECORD
No. of Elements	2

RECORD_MAIN

Sub-Index	01 _h
Description	ip_time_units
Data Type	UINT8
Access	rw
PDO Mapping	yes
Units	gemäß ip_time_index
Value Range	ip_time_index = -3: 1, 2,, 9, 10 ip_time_index = -4: 10, 20,, 90, 100
Default Value	-

RECORD_Eintrag

Sub-Index	02 _h
Description	ip_time_index
Data Type	INT8
Access	rw
PDO Mapping	yes
Units	-
Value Range	-3, -4
Default Value	-3

RECORD_Eintrag

Wert	ip_time_units wird angegeben in
-3	10 ⁻³ Sekunden (ms)
-4	10 ⁻⁴ Sekunden (0.1 ms)

ij

Die Änderung des Synchronisationsintervalls wird nur nach einem Reset wirksam. Soll das Interpolationsintervall über den CAN-Bus geändert werden, muss der

Parametersatz gesichert und ein Reset ausgeführt werden.

8.4.2.6 Objekt 60C3_h: interpolation_sync_definition

Über das Objekt interpolation_sync_definition wird die Art (synchronize_on_group) und die Anzahl (ip_sync_every_n_event) von Synchronisations-Telegrammen pro Synchronisations-Intervall vorgegeben. Für die item Servo Positioning Controller C Serie kann nur das Standard-SYNC-Telegramm und 1 SYNC pro Intervall eingestellt werden.

Index	60C3 _h
Name	interpolation_sync_definition
Object Code	ARRAY
No. of Elements	2
Data Type	UINT8

ARRAY_MAIN

Sub-Index	01 _h
Description	syncronize_on_group
Access	rw
PDO Mapping	yes
Units	-
Value Range	0
Default Value	0

ARRAY_Eintrag

Wert	Bedeutung
0	Standard SYNC-Telegramm verwenden

Sub-Index	02 _h
Description	ip_sync_every_n_event
Access	rw
PDO Mapping	yes
Units	-
Value Range	1
Default Value	1

ARRAY_Eintrag

8.4.2.7 Objekt 60C4_h: interpolation_data_configuration

Über den Objekt-Record interpolation_data_configuration kann die Art (buffer_organisation) und Größe (max_buffer_size, actual_buffer_size) eines eventuell vorhandenen Puffers sowie der Zugriff auf diesen (buffer_position, buffer_clear) konfiguriert werden. Über das Objekt size_of_data_record kann die Größe eines Puffer-Elements ausgelesen werden. Obwohl bei der Interpolationsart "Lineare Interpolation ohne Puffer" kein Puffer zur Verfügung steht, muss der Zugriff über das Objekt buffer_clear allerdings auch in diesem Fall freigegeben werden.

Index	60C4 _h
Name	interpolation_data_configuration
Object Code	RECORD
No. of Elements	6

RECORD_MAIN

Sub-Index	01 _h
Description	max_buffer_size
Data Type	UINT32
Access	ro
PDO Mapping	no
Units	-
Value Range	0
Default Value	0

RECORD_Eintrag

Sub-Index	02 _h
Description	actual_size
Data Type	UINT32
Access	rw
PDO Mapping	yes
Units	-
Value Range	0max_buffer_size
Default Value	0

RECORD_Eintrag

Sub-Index	03 _h
Description	buffer_organisation
Data Type	UINT8
Access	rw
PDO Mapping	yes
Units	-
Value Range	0
Default Value	0

RECORD_Eintrag

Wert	Bedeutung
0	FIFO

Sub-Index	04 _h
Description	buffer_position
Data Type	UINT16
Access	rw
PDO Mapping	yes
Units	-
Value Range	0
Default Value	0

RECORD_Eintrag

Sub-Index	05 _h	
Description	size_of_data_record	
Data Type	UINT8	
Access	wo	
PDO Mapping	yes	
Units	-	
Value Range	2	
Default Value	2	

RECORD_Eintrag

Sub-Index	06 _h
Description	buffer_clear
Data Type	UINT8
Access	wo
PDO Mapping	yes
Units	-
Value Range	0, 1
Default Value	0

RECORD_Eintrag

Wert	Bedeutung
0	Puffer löschen / Zugriff auf 60C1 _h nicht erlaubt
1	Zugriff auf 60C1 _h freigegeben

8.4.3 Funktionsbeschreibung

8.4.3.1 Vorbereitende Parametrierung

Bevor der Regler in die Betriebsart interpolated position mode geschaltet werden kann, müssen diverse Einstellungen vorgenommen werden: Dazu zählen die Einstellung des Interpolations-Intervalls (interpolation_time_period), also der Zeit zwischen zwei SYNC-Telegrammen, der Interpolationstyp (interpolation_submode_select) und die Art der Synchronisation (interpolation_sync_definition). Zusätzlich muss der Zugriff auf den Positionspuffer über das Objekt buffer_clear freigegeben werden.

BEISPIEL

Aufgabe	CAN-Objekt / COB		
Interpolationsart -2	60C0h, interpolation_submode_select = -2		
Zeiteinheit 0.1 ms	60C2h_02h, interpolation_time_index = -04		
Zeitintervall 4 ms	60C2h_01h, interpolation_time_units = 40		
Parameter sichern	1010h_01h, save_all_parameters		
Reset ausführen	NMT reset node		
Warten auf Bootup	Bootup-Nachricht		
Puffer-Freigabe 1	60C4h_06h, buffer_clear = 1		
SYNC erzeugen	SYNC (Raster 4 ms)		

8.4.3.2 Aktivierung des Interpolated Position Mode und Aufsynchronisation

Der IP wird über das Objekt modes_of_operation (6060_h) aktiviert. Ab diesem Zeitpunkt versucht der Regler sich auf das externe Zeitraster, welches durch die SYNC-Telegrammen vorgegeben wird, aufzusynchronisieren. Konnte sich der Regler erfolgreich aufsynchronisieren, meldet er die Betriebsart interpolated position mode im Objekt modes_of_operation_display (6061_h). Während der Aufsynchronisation meldet der Regler ungültige Betriebart (-1) zurück. Werden nach der erfolgten Aufsynchronisation die SYNC-Telegramme nicht im richtigen Zeitraster gesendet, wechselt der Regler zurück in die ungültige Betriebart.

Ist die Betriebsart eingenommen, kann die Übertragung von Positionsdaten an den Antrieb beginnen. Sinnvollerweise liest dazu die übergeordnete Steuerung zunächst die aktuelle Istposition aus dem Regler aus und schreibt diese zyklisch als neuen Sollwert (interpolation_data_record) in den Regler. Über

Handshake- Bits des **controlword** und des **statusword** wird die Übernahme der Daten durch den Regler aktiviert. Durch Setzen des Bits **enable_ip_mode** im **controlword** zeigt der Host an, dass mit der Auswertung der Lagedaten begonnen werden soll. Erst wenn der Regler über das Statusbit **ip_mode_selected** im **statusword** dieses quittiert, werden die Datensätze ausgewertet.

Im Einzelnen ergibt sich daher folgende Zuordnung und der folgende Ablauf:

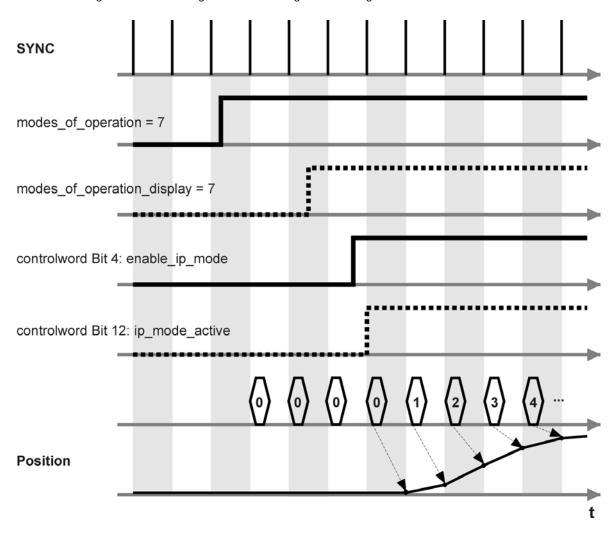


Abbildung 8.21: Aufsynchronisation und Datenfreigabe

Nr.	Ereignis	CAN-Objekt
1	SYNC- Nachrichten erzeugen	
2	Anforderung der Betriebsart ip:	6060 _h , modes_of_operation = 07
3	Warten bis Betriebsart eingenommen	6061 _h , modes_of_operation_display = 07
4	Auslesen der akt. Istposition	6064 _h , position_actual_value
5	Zurückschreiben als aktuelle Sollposition	$60C1_{h}$ _ 01_{h} , ip_data_position
6	Start der Interpolation	6040 _h , controlword, enable_ip_mode

7	Quittierung durch Regler	6041 _h , statusword, ip_mode_active
8	Ändern der aktuellen Sollposition gemäß Trajektorie	60C1 _h _01 _h , ip_data_position

Nach Beendigung des synchronen Fahrvorgangs kann durch Löschen des Bits **enable_ip_mode** die weitere Auswertung von Lagewerten verhindert werden. Anschließend kann gegebenenfalls in eine andere Betriebsart umgeschaltet werden.

8.4.3.3 Unterbrechung der Interpolation im Fehlerfall

Wird eine laufende Interpolation (**ip_mode_active** gesetzt) durch das Auftreten eines Reglerfehlers unterbrochen, verhält sich der Antrieb zunächst so, wie für den jeweiligen Fehler spezifiziert (z.B. Wegnahme der Reglerfreigabe und Wechsel in den Zustand **SWICTH_ON_DISABLED**).

Die Interpolation kann dann nur durch eine erneute Aufsynchronisation fortgesetzt werden, da der Regler wieder in den Zustand **OPERATION_ENABLE** gebracht werden muss, wodurch das Bit **ip_mode_active** gelöscht wird.

8.5 Betriebsart Drehzahlregelung (Profile Velocity Mode)

8.5.1 Übersicht

Der drehzahlgeregelte Betrieb (Profile Velocity Mode) beinhaltet die folgenden Unterfunktionen:

- Sollwert-Erzeugung durch den Rampen-Generator
- Drehzahlerfassung über den Winkelgeber durch Differentiation
- Drehzahlregelung mit geeigneten Eingabe- und Ausgabesignalen
- Begrenzung des Drehmomenten-Sollwertes (torque_demand_value)
- Überwachung der Ist-Geschwindigkeit (velocity_actual_value) mit der Fenster-Funktion/Schwelle

Die Bedeutung der folgenden Parameter ist im Kapitel Positionieren (Profile Position Mode) beschrieben: profile_acceleration, profile_deceleration, quick_stop.

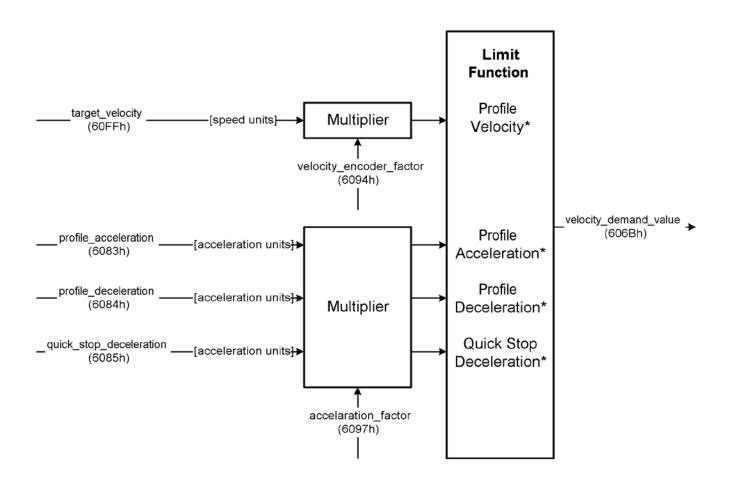


Abbildung 8.22: Struktur des drehzahlgeregelten Betriebs (Profile Velocity Mode)

8.5.2 Beschreibung der Objekte

8.5.2.1 In diesem Kapitel behandelte Objekte

Index	Objekt	Name	Тур	Attr.
6069 _h	VAR	velocity_sensor_actual_value	INT32	ro
606A _h	VAR	sensor_selection_code	INT16	rw
606B _h	VAR	velocity_demand_value	INT32	ro
202E _h	VAR	velocity_demand_sync_value	INT32	ro
606C _h	VAR	velocity_actual_value	INT32	ro
606D _h	VAR	velocity_window	UINT16	rw
606E _h	VAR	velocity_window_time	UINT16	rw
606F _h	VAR	velocity_threshold	UINT16	rw
6080 _h	VAR	max_motor_speed	UINT32	rw
60FF _h	VAR	target_velocity	INT32	rw

8.5.2.2 Betroffene Objekte aus anderen Kapiteln

Index	Objekt	Name	Тур	Kapitel
6040 _h	VAR	controlword	INT16	6.18. Gerätesteuerung
6041 _h	VAR	statusword	UINT16	6.18. Gerätesteuerung
6063 _h	VAR	position_actual_value*	INT32	6.7 Lageregler
6071 _h	VAR	target_torque	INT16	8.6 Momentenregler
6072 _h	VAR	max_torque_value	UINT16	8.6 Momentenregler
607E _h	VAR	polarity	UINT8	6.2 Umrechnungsfaktoren
6083 _h	VAR	profile_acceleration	UINT32	8.3 Positionieren
6084 _h	VAR	profile_deceleration	UINT32	8.3 Positionieren
6085 _h	VAR	quick_stop_deceleration	UINT32	8.3 Positionieren
6086 _h	VAR	motion_profile_type	INT16	8.3 Positionieren
6094 _h	ARRAY	velocity_encoder_factor	UINT32	6.2 Umrechnungsfaktoren

8.5.2.3 Objekt 6069_h: velocity_sensor_actual_value

Mit dem Objekt **velocity_sensor_actual_value** kann der Wert eines möglichen Geschwindigkeitsgebers in internen Einheiten ausgelesen werden. Bei der item Servo Positioning Controller C Serie kann kein separater Drehzahlgeber angeschlossen werden. Zur Bestimmung des Drehzahl-Istwertes sollte daher grundsätzlich das Objekt **606C**_h verwendet werden.

Index	6069 _h	VAR_Eintrag
Name	velocity_sensor_actual_value	
Object Code	VAR	
Data Type	INT32	
-		•
Access	ro	VAR_Eintrag
PDO Mapping	yes	mag
Units	U / 4096 min	
Value Range	-	
Default Value		

8.5.2.4 Objekt 606A_h: sensor_selection_code

Mit diesem Objekt kann der Geschwindigkeitssensor ausgewählt werden. Zur Zeit ist kein separater Geschwindigkeitssensor vorgesehen. Deshalb ist nur der standardmäßige Winkelgeber anwählbar.

Index	606A _h	VAR_Eintrag
Name	sensor_selection_code	
Object Code	VAR	
Data Type	INT16	
		•
Access	rw	VAR_Eintrag
PDO Mapping	yes	
Units	-	
Value Range	0	
Default Value	0	

8.5.2.5 Objekt 606B_h: velocity_demand_value

Mit diesem Objekt kann der aktuelle Drehzahlsollwert des Drehzahlreglers ausgelesen werden. Auf diesen wirkt der Sollwert vom Rampen-Generator bzw. des Fahrkurven-Generators. Bei aktiviertem Lageregler wird außerdem dessen Korrekturgeschwindigkeit addiert.

Index	606B _h	VAR_Eintrag
Name	velocity_demand_value	
Object Code	VAR	
Data Type	INT32	
		•
Access	ro	VAR_Eintrag
PDO Mapping	yes	
Units	speed units	
Value Range	-	
Default Value	-	

8.5.2.6 Objekt 202E_h: velocity_demand_sync_value

Über dieses Objekt kann die Soll-Drehzahl des Synchronisationsgeber ausgelesen werden. Diese wird durch das Objekt 2022_h synchronization_encoder_select (Kap. 6.11) definiert. Dieses Objekt wird in benutzerdefinierten Einheiten angegeben.

Index	202E _h
Name	velocity_demand_sync_value
Object Code	VAR
Data Type	INT32

VAR_Eintrag Ab Firmware 3.2.0.

Access	ro	
PDO Mapping	no	
Units	velocity units	
Value Range	-	l
Default Value	-	1

VAR_Eintrag

8.5.2.7 Objekt 606Ch: velocity_actual_value

Über das Objekt velocity_actual_value kann der Drehzahl-Istwert ausgelesen werden.

Index	606C _h	VAR_Eintrag
Name	velocity_actual_value	
Object Code	VAR	
Data Type	INT32	

-		
Access	ro	l۱
PDO Mapping	yes	
Units	speed units	
Value Range	-	
Default Value	-	

VAR_Eintrag

8.5.2.8 Objekt 2074h: velocity_actual_value_filtered

Über das Objekt velocity_actual_value_filtered kann ein gefilterter Drehzahl- Istwert ausgelesen werden, der allerdings <u>nur zu Anzeigezwecken</u> verwendet werden sollte. Im Gegensatz zu velocity_actual_value wird velocity_actual_value_filtered nicht zur Regelung, wohl aber für den Durchdrehschutz des Reglers verwendet. Die Filterzeitkonstante kann über das Objekt 2073_h (velocity_display_filter_time) eingestellt werden.

Siehe Kap. 6.6.2.2

Index	2074 _h
Name	velocity_actual_value_filtered
Object Code	VAR
Data Type	INT32

VAR_Eintrag Ab Firmware 3.5.x.1

Access	ro	VAR_Eintrag
PDO Mapping	yes	<u>_</u> ag
Units	speed units	
Value Range	-	
Default Value	-	

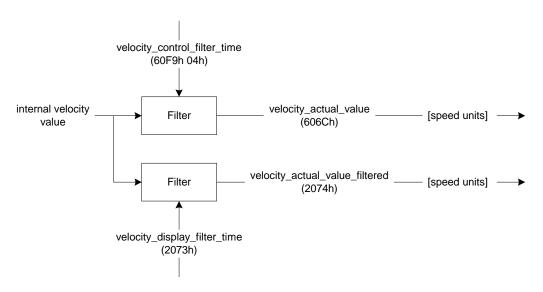


Abbildung 8.23: Ermittlung von velocity_actual_value und velocity_actual_value_filtered

8.5.2.9 Objekt 606D_h: velocity_window

Das Objekt velocity_window dient zur Einstellung des Fensterkomparators. Dieser vergleicht den Drehzahl-Istwert mit der vorgegebenen Endgeschwindigkeit (Objekt 60FF_n: target_velocity). Ist die Differenz eine bestimmte Zeitdauer kleiner als hier angegeben, so wird das Bit 10 target_reached im Objekt statusword gesetzt.

Siehe auch: Objekt 606E_h (velocity_window_time).

Index	606D _h	VAR_Eintrag
Name	velocity_window	
Object Code	VAR	
Data Type	UINT16	

Access	rw	V
PDO Mapping	yes	
Units	speed units	
Value Range	065536 min ⁻¹	
Default Value	4 min ⁻¹	

VAR_Eintrag

8.5.2.10 Objekt 606E_h: velocity_window_time

Das Objekt velocity_window_time dient neben dem Objekt 606D_h: velocity_window der Einstellung des Fensterkomparators. Die Drehzahl muss die hier spezifizierte Zeit innerhalb des velocity_window liegen, damit das Bit 10 target_reached im Objekt statusword gesetzt wird.

Index	606E _h	VAR_Eintrag
Name	velocity_window_time	
Object Code	VAR	
Data Type	UINT16	

Access	rw	VA
PDO Mapping	yes] "
Units	ms	
Value Range	04999	
Default Value	0	

VAR_Eintrag

8.5.2.11 Objekt 606F_h: velocity_threshold

Das Objekt **velocity_threshold** gibt an, ab welchem Drehzahl-Istwert der Antrieb als stehend angesehen wird. Wenn der Antrieb den hier vorgegebenen Drehzahlwert für einen bestimmten Zeitraum überschreitet, wird im **statusword** das Bit 12 (velocity = 0) gelöscht. Der Zeitraum wird durch das Objekt **velocity_threshold_time** bestimmt.

Index	606F _h	VAR_Eintrag
Name	velocity_threshold	
Object Code	VAR	
Data Type	UINT16	
		_
Access	rw	VAR_Eintrag
PDO Mapping	yes	
Units	speed units	
Value Range	065536 min ⁻¹	
Default Value	10	

8.5.2.12 Objekt 6070_h: velocity_threshold_time

Das Objekt **velocity_threshold_time** gibt an, wie lange der Antrieb den vorgegebenen Drehzahlwert überschreiten darf, bevor im **statusword** das Bit 12 (velocity = 0) gelöscht wird.

Index	6070 _h	VAR_Eintrag
Name	velocity_threshold_time	
Object Code	VAR	
Data Type	UINT16	
		-
Access	rw	VAR_Eintrag
PDO Mapping	yes	
Units	ms	
Value Range	04999	
Default Value	0	

8.5.2.13 Objekt 6080_h: max_motor_speed

Das Objekt max_motor_speed gibt die höchste erlaubte Drehzahl für den Motor in min⁻¹. Das Objekt wird benutzt, um den Motor zu schützen und kann dem Motordatenblatt entnommen werden. Der Drehzahl-Sollwert wird auf diesen Wert begrenzt.

Index	6080 _h	VAR_Eintrag
Name	max_motor_speed	
Object Code	VAR	
Data Type	UINT16	

Access	rw	V
PDO Mapping	yes	
Units	min ⁻¹	
Value Range	0 32768 min ⁻¹	
Default Value	32768 min ⁻¹	

/AR_Eintrag

8.5.2.14 Objekt 60FF_h: target_velocity

Das Objekt target_velocity ist die Sollwertvorgabe für den Rampen-Generator.

Index	60FF _h	VAR_Eintrag
Name	target_velocity	
Object Code	VAR	
Data Type	INT32	

Access	rw	l
PDO Mapping	yes	VA
Units	speed units	
Value Range	-	
Default Value	-	

VAR_Eintrag

8.6 Drehzahl-Rampen

Wird als modes_of_operation profile_velocity_mode gewählt, wird grundsätzlich auch die Sollwertrampe aktiviert. Somit ist es möglich über die Objekte profile_acceleration und profile_deceleration eine sprungförmige Sollwertänderung auf eine bestimmte Drehzahländerungen pro Zeit zu begrenzen. Der Regler ermöglicht es, nicht nur unterschiedliche Beschleunigungen für Bremsen und Beschleunigungen anzugeben, sondern noch zusätzlich nach positiver und negativer Drehzahl zu unterscheiden. Die folgende Abbildung verdeutlicht dieses Verhalten:



Abbildung 8.24: Drehzahlrampen

Um diese 4 Beschleunigungen einzeln parametrieren zu können, ist die Objektgruppe velocity_ramps vorhanden. Es ist zu beachten, dass die Objekte profile_acceleration und profile_deceleration die gleichen internen Beschleunigungen verändern, wie die velocity_ramps. Wird die profile_acceleration geschrieben, werden gemeinsam velocity_acceleration_pos und velocity_acceleration_neg geändert, wird die profile_deceleration geschrieben, werden gemeinsam velocity_deceleration_pos und velocity_deceleration_neg geändert. Mit dem Objekt velocity_ramps_enable läßt sich festlegen, ob die Sollwerte über den Rampengenerator geführt werden, oder nicht.

Index	2090 _h
Name	velocity_ramps
Object Code	RECORD
No. of Elements	5

RECORD_MAIN Ab Firmware 3.0.x.1.

Sub-Index	01 _h			
Description	velocity_ramps_enable			
Data Type	UINT8			
Access	rw			
PDO Mapping	no			
Units	-			
Value Range	0: Sollwert NICHT über den Rampengenerator			
	1: Sollwert über den Rampengenerator			
Default Value	1			

RECORD_Eintrag Ab Firmware 3.0.x.1.

Sub-Index	02 _h	
Description	velocity_acceleration_pos	
Data Type	INT32	
Access	rw	
PDO Mapping	no	
Units	acceleration units	
Value Range	-	
Default Value	14 100 min ⁻¹ /s	

RECORD_Eintrag

Sub-Index	03 _h		
Description	velocity_deceleration_pos		
Data Type	NT32		
Access	V		
PDO Mapping	no		
Units	acceleration units		
Value Range	-		
Default Value	14 100 min ⁻¹ /s		

RECORD_Eintrag

Sub-Index	04 _h	
Description	velocity_acceleration_neg	
Data Type	INT32	
Access	rw .	
PDO Mapping	no	
Units	acceleration units	
Value Range	-	
Default Value	14 100 min ⁻¹ /s	

RECORD_Eintrag

Sub-Index	05 _h	
Description	velocity_deceleration_neg	
Data Type	INT32	
Access	rw	
PDO Mapping	10	
Units	acceleration units	
Value Range	-	
Default Value	14 100 min ⁻¹ /s	

RECORD_Eintrag

8.7 Betriebsart Momentenregelung (Profile Torque Mode)

8.7.1 Übersicht

Dieses Kapitel beschreibt den drehmomentengeregelten Betrieb. Diese Betriebsart erlaubt es, dass dem Regler ein externer Momenten-Sollwert target_torque vorgegeben wird, welcher durch den integrierten Rampen-Generator geglättet werden kann. Somit ist es möglich, dass dieser Regler auch für Bahnsteuerungen eingesetzt werden kann, bei denen sowohl der Lageregler als auch der Drehzahlregler auf einen externen Rechner verlagert sind.

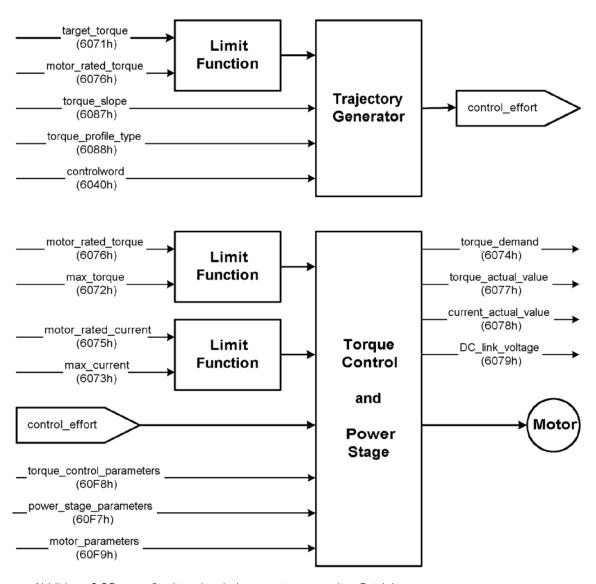


Abbildung 8.25: Struktur des drehmomentengeregelten Betriebs

Für den Rampengenerator müssen die Parameter Rampensteilheit **torque_slope** und Rampenform **torque_profile_type** vorgegeben werden.

Wenn im **controlword** das Bit 8 **halt** gesetzt wird, senkt der Rampen-Generator das Drehmoment bis auf Null ab. Entsprechend erhöht er es wieder auf das Sollmoment **target_torque**, wenn das Bit 8 wieder gelöscht wird. In beiden Fällen berücksichtigt der Rampen-Generator die Rampensteilheit **torque_slope** und die Rampenform **torque_profile_type**.

Alle Definitionen innerhalb dieses Dokumentes beziehen sich auf drehbare Motoren. Wenn lineare Motoren benutzt werden, müssen sich alle "Drehmoment"-Objekte statt dessen auf eine "Kraft" beziehen. Der Einfachheit halber sind die Objekte nicht doppelt vertreten und ihre Namen sollten nicht verändert werden.

Die Betriebsarten Positionierbetrieb (Profile Position Mode) und Drehzahlregler (Profile Velocity Mode) benötigen für ihre Funktion den Momentenregler. Deshalb ist es immer notwendig, diesen zu parametrieren.

8.7.2 Beschreibung der Objekte

8.7.2.1 In diesem Kapitel behandelte Objekte

Index	Objekt	Name	Тур	Attr.
6071 _h	VAR	target_torque	INT16	rw
6072 _h	VAR	max_torque	UINT16	rw
6074 _h	VAR	torque_demand_value	INT16	ro
6076 _h	VAR	motor_rated_torque	UINT32	rw
6077 _h	VAR	torque_actual_value	INT16	ro
6078 _h	VAR	current_actual_value	INT16	ro
6079 _h	VAR	DC_link_circuit_voltage	UINT32	ro
6087 _h	VAR	torque_slope	UINT32	rw
6088 _h	VAR	torque_profile_type	INT16	rw
60F7 _h	RECORD	power_stage_parameters		rw
60F6 _h	RECORD	torque_control_parameters		rw

8.7.2.2 Betroffene Objekte aus anderen Kapiteln

Index	Objekt	Name	Тур	Kapitel
6040 _h	VAR	controlword	INT16	6.16 Gerätesteuerung
60F9 _h	RECORD	motor_parameters		6.5 Stromregler u. Motoranpassung
6075 _h	VAR	motor_rated_current	UINT32	6.5 Stromregler u. Motoranpassung
6073 _h	VAR	max_current	UINT16	6.5 Stromregler u. Motoranpassung

8.7.2.3 Objekt 6071_h: target_torque

Dieser Parameter ist im drehmomentengeregelten Betrieb (Profile Torque Mode) der Eingabewert für den Drehmomentenregler. Er wird in Tausendsteln des Nennmomentes (Objekt 6076_h) angegeben.

Index	6071 _h	VAR_Eintrag
Name	target_torque	
Object Code	VAR	
Data Type	INT16	

— VAR_Eintrag

Access	rw
PDO Mapping	yes
Units	motor_rated_torque / 1000
Value Range	-3276832768
Default Value	0

8.7.2.4 Objekt 6072_h: max_torque

Dieser Wert stellt das höchstzulässige Drehmoment des Motors dar. Es wird in Tausendsteln des Nennmomentes (Objekt 6076_h) angegeben. Wenn zum Beispiel kurzzeitig eine zweifache Überlastung des Motors zulässig ist, so ist hier der Wert 2000 einzutragen.

j

Das Objekt 6072_h : max_torque korrespondiert mit dem Objekt 6073_h : max_current und darf erst beschrieben werden, wenn zuvor das Objekt 6075_h : motor_rated_current mit einem gültigen Wert beschrieben wurde.

Index	6072 _h
Name	max_torque
Object Code	VAR
Data Type	UINT16

VAR_Eintrag

Access	rw
PDO Mapping	yes
Units	motor_rated_torque / 1000
Value Range	100065536
Default Value	2023

VAR_Eintrag

8.7.2.5 Objekt 6074_h: torque_demand_value

Über dieses Objekt kann das aktuelle Sollmoment in Tausendsteln des Nennmoments (6076_h) ausgelesen werden. Berücksichtigt sind hierbei die internen Begrenzungen des Reglers (Stromgrenzwerte und I²T-Überwachung).

Index	6074 _h	VAR_Eintrag
Name	torque_demand_value	
Object Code	VAR	
Data Type	INT16	
		_ _
Access	ro	VAR_Eintrag
PDO Mapping	yes	
Units	motor_rated_torque / 1000	
Value Range	-	
Default Value	_	

8.7.2.6 Objekt 6076_h: motor_rated_torque

Dieses Objekt gibt das Nennmoment des Motors an. Dieses kann dem Typenschild des Motors entnommen werden. Es ist in der Einheit 0.001 Nm einzugeben.

Index	6076 _h	VAR_Eintrag
Name	motor_rated_torque	
Object Code	VAR	
Data Type	UINT32	
		-
Access	rw	VAR_Eintrag
PDO Mapping	yes	
Units	0.001 Nm	
Value Range	-	
Default Value	296	

8.7.2.7 Objekt 6077_h: torque_actual_value

Über dieses Objekt kann der Drehmomenten-Istwert des Motors in Tausendsteln des Nennmomentes (Objekt 6076_h) ausgelesen werden.

Index	6077 _h	VAR_Eintrag
Name	torque_actual_value	
Object Code	VAR	
Data Type	INT16	
Access	ro	VAR_Eintrag

Access	ro	VA
PDO Mapping	yes	
Units	motor_rated_torque / 1000	
Value Range	-	
Default Value	-	

8.7.2.8 Objekt 6078h: current_actual_value

Über dieses Objekt kann der Strom-Istwert des Motors in Tausendsteln des Nennstromes (Objekt 6075_n) ausgelesen werden.

Index	6078 _h	VAR_Eintrag
Name	current_actual_value	
Object Code	VAR	
Data Type	INT16	

Access	ro	VAR_Eintrag
PDO Mapping	yes	<u>_</u> ag
Units	motor_rated_current / 1000	
Value Range	-	
Default Value	-	

Default Value

8.7.2.9 Objekt 6079_h: dc_link_circuit_voltage

Über dieses Objekt kann die Zwischenkreisspannung des Reglers ausgelesen werden. Die Spannung wird in der Einheit Millivolt angegeben.

Index	6079 _h	VAR_Eintrag
Name	dc_link_circuit_voltage	
Object Code	VAR	
Data Type	UINT32	
		•
Access	ro	VAR_Eintrag
PDO Mapping	yes	g
Units	mV	
Value Range	-	

8.7.2.10 Objekt 6087_h: torque_slope

Dieser Parameter beschreibt die Änderungsgeschwindigkeit der Sollwertrampe. Diese ist in Tausendsteln vom Nennmoment pro Sekunde anzugeben. Beispielsweise wird der Drehmomenten-Sollwert target_torque von 0 Nm auf den Wert motor_rated_torque erhöht. Wenn der Ausgangswert der zwischengeschalteten Drehmomentenrampe diesen Wert in einer Sekunde erreichen soll, dann ist in diesem Objekt der Wert 1000 einzuschreiben.

Index	6087 _h	VAR_Eintrag
Name	torque_slope	
Object Code	VAR	
Data Type	UINT32	
		- -
Access	rw	VAR_Eintrag
PDO Mapping	yes	
Units	motor_rated_torque / 1000 s	
Value Range	-	
Default Value	E310F94 _h	

8.7.2.11 Objekt 6088_h: torque_profile_type

0

Default Value

Mit dem Objekt **torque_profile_type** wird vorgegeben, mit welcher Kurvenform ein Sollwertsprung ausgeführt wird. Zur Zeit ist in diesem Regler nur die lineare Rampe implementiert, so dass dieses Objekt nur mit dem Wert O beschrieben werden kann.

Index	6088 _h	VAR_Eintrag
Name	torque_profile_type	
Object Code	VAR	
Data Type	INT16	
-		-
Access	rw	VAR_Eintrag
PDO Mapping	yes	
Units	-	
Value Bange	n	

Wert	Bedeutung
0	Lineare Rampe

9 Anhang

9.1 Kenndaten des CAN-Interface

Das CAN-Interface besitzt folgende Leistungsmerkmale:

- CAN-Spezifikation V2.0 Teil A (Teil B passiv, d. h. Nachrichten dieser Art werden toleriert, aber nicht verarbeitet)
- Physical layer: ISO 11898

9.2 Definitionsdatei

```
OBJEKTE.H
* Definition der CANopen-Objekte
* Autor: Ulf Matthiesen
* Date: 05.09.2007
* Update:
* Tests:
* Freigabe: ---
* Version: 4.00
* Codierung: (0xHHHHSULL mit HHHH = Hauptindex
              SU = Subindex
               LL = Länge in Bits + 0, wenn unsigned
                         + 1, wenn signed
#define cUINT8 0x08
#define cUINT16 0x10
#define cUINT32 0x20
#define cINT8 0x09
#define cINT16 0x11
#define cINT32 0x21
#define cPDO 0x00 /* Hier geeignete Bitkonstanten einfügbar */
```

#define cWR

#define cRD 0x00 /* Hier geeignete Bitkonstanten einfügbar */ #define device_type (0x100000 + UINT32 + cRD (0x100100 + UINT8 + cRD + cPD0 } #define error_register #define manufacturer_status_register (0x100200 + UINT32 + cRD #define pre_defined_error_field (0x100300 + UINT8 + cRD + cWR #define standard_error_field_0 (0x100301 + UINT32 + cRD (0x100302 + UINT32 + cRD #define standard_error_field_1 } #define standard_error_field_2 (0x100303 + UINT32 + cRD #define standard_error_field_3 (0x100304 + UINT32 + cRD #define cob_id_sync (0x100500 + UINT32 + cRD + cWR #define communication_cycle_period (0x100600 + UINT32 + cRD + cWR (0x100700 + UINT32 + cRD + cWR #define synchronous_window_length #define guard_time (0x100C00 + UINT16 + cRD + cWR (0x100D00 + UINT8 + cRD + cWR #define life_time_factor #define store_parameters (0x101000 + UINT8 + cRD #define save_all_parameters (0x101001 + UINT32 + cRD + cWR (0x101100 + UINT8 + cRD #define restore_parameters (0x101101 + UINT32 + cRD + cWR #define restore_all_default_parameters #define cob_id_time_stamp_message (0x101200 + UINT32 + cRD + cWR #define cob_id_emergency_message (0x101400 + UINT32 + cRD + cWR #define consumer_heartbeat_time (0x101600 + UINT8 + cRD #define consumer_heartbeat_time_1 (0x101601 + UINT32 + cRD + cWR (0x101700 + UINT16 + cRD + cWR #define producer_heartbeat_time #define identity_object (0x101800 + UINT8 + cRD } (0x101801 + UINT32 + cRD #define vendor_id } #define product_code (0x101802 + UINT32 + cRD } (0x101803 + UINT32 + cRD #define revision_number } (0x101804 + UINT32 + cRD #define serial_number (0x120000 + UINT8 + cRD #define server_sdo_parameter #define cob_id_client_server (0x120001 + UINT32 + cRD #define cob_id_server_client (0x120002 + UINT32 + cRD (0x140000 + UINT8 + cRD #define receive_pdo_parameter_rpdo1 #define cob_id_used_by_pdo_rpdo1 (0x140001 + UINT32 + cRD + cWR } #define transmission_type_rpdo1 (0x140002 + UINT8 + cRD + cWR #define receive_pdo_parameter_rpdo2 (0x140100 + UINT8 + cRD (0x140101 + UINT32 + cRD + cWR #define cob_id_used_by_pdo_rpdo2 #define transmission_type_rpdo2 (0x140102 + UINT8 + cRD + cWR (0x140200 + UINT8 + cRD #define receive_pdo_parameter_rpdo3 (0x140201 + UINT32 + cRD + cWR #define cob_id_used_by_pdo_rpdo3 } #define transmission_type_rpdo3 (0x140202 + UINT8 + cRD + cWR #define receive_pdo_parameter_rpdo4 (0x140300 + UINT8 + cRD #define cob_id_used_by_pdo_rpdo4 (0x140301 + UINT32 + cRD + cWR #define transmission_type_rpdo4 (0x140302 + UINT8 + cRD + cWR (0x160000 + UINT8 + cRD + cWR #define receive_pdo_mapping_rpdo1 (0x160001 + UINT32 + cRD + cWR #define first_mapped_object_rpdo1 #define second_mapped_object_rpdo1 (0x160002 + UINT32 + cRD + cWR (0x160003 + UINT32 + cRD + cWR #define third_mapped_object_rpdo1 #define fourth_mapped_object_rpdo1 (0x160004 + UINT32 + cRD + cWR (0x160100 + UINT8 + cRD + cWR #define receive_pdo_mapping_rpdo2 #define first_mapped_object_rpdo2 (0x160101 + UINT32 + cRD + cWR #define second_mapped_object_rpdo2 (0x160102 + UINT32 + cRD + cWR #define third_mapped_object_rpdo2 (0x160103 + UINT32 + cRD + cWR #define fourth_mapped_object_rpdo2 (0x160104 + UINT32 + cRD + cWR } #define receive_pdo_mapping_rpdo3 (0x160200 + UINT8 + cRD + cWR #define first_mapped_object_rpdo3 (0x160201 + UINT32 + cRD + cWR

0x00 /* Hier geeignete Bitkonstanten einfügbar */


```
(0x160202 + UINT32 + cRD + cWR
#define second_mapped_object_rpdo3
#define third_mapped_object_rpdo3
                                        (0x160203 + UINT32 + cRD + cWR
#define fourth_mapped_object_rpdo3
                                        (0x160204 + UINT32 + cRD + cWR
                                                                           }
#define receive_pdo_mapping_rpdo4
                                        (0x160300 + UINT8 + cRD + cWR
                                                                           }
                                       (0x160301 + UINT32 + cRD + cWR
#define first_mapped_object_rpdo4
                                         (0x160302 + UINT32 + cRD + cWR
#define second_mapped_object_rpdo4
#define third_mapped_object_rpdo4
                                        (0x160303 + UINT32 + cRD + cWR
#define fourth_mapped_object_rpdo4
                                        (0x160304 + UINT32 + cRD + cWR
                                         (0x180000 + UINT8 + cRD
#define transmit_pdo_parameter_tpdo1
#define cob_id_used_by_pdo_tpdo1
                                         (0x180001 + UINT32 + cRD + cWR
#define transmission_type_tpdo1
                                      (0x180002 + UINT8 + cRD + cWR
#define inhibit_time_tpdo1
                                  (0x180003 + UINT16 + cRD + cWR
#define transmit_pdo_parameter_tpdo2
                                         (0x180100 + UINT8 + cRD
                                         (0x180101 + UINT32 + cRD + cWR
#define cob_id_used_by_pdo_tpdo2
#define transmission_type_tpdo2
                                     (0x180102 + UINT8 + cRD + cWR
                                  (0x180103 + UINT16 + cRD + cWR
#define inhibit_time_tpdo2
#define transmit_pdo_parameter_tpdo3
                                         (0x180200 + UINT8 + cRD
#define cob_id_used_by_pdo_tpdo3
                                        (0x180201 + UINT32 + cRD + cWR
                                     (0x180202 + UINT8 + cRD + cWR
#define transmission_type_tpdo3
#define inhibit_time_tpdo3
                                  (0x180203 + UINT16 + cRD + cWR
#define transmit_pdo_parameter_tpdo4
                                         (0x180300 + UINT8 + cRD
#define cob_id_used_by_pdo_tpdo4
                                        (0x180301 + UINT32 + cRD + cWR
#define transmission_type_tpdo4
                                      (0x180302 + UINT8 + cRD + cWR
#define inhibit_time_tpdo4
                                  (0x180303 + UINT16 + cRD + cWR
#define transmit_pdo_mapping_tpdo1
                                         (0x1A0000 + UINT8 + cRD + cWR
                                       (0x1A0001 + UINT32 + cRD + cWR
#define first_mapped_object_tpdo1
                                         (0x1A0002 + UINT32 + cRD + cWR
#define second_mapped_object_tpdo1
#define third_mapped_object_tpdo1
                                       (0x1A0003 + UINT32 + cRD + cWR
                                        (0x1A0004 + UINT32 + cRD + cWR
#define fourth_mapped_object_tpdo1
                                        (0x1A0100 + UINT8 + cRD + cWR
#define transmit_pdo_mapping_tpdo2
                                       (0x1A0101 + UINT32 + cRD + cWR
#define first_mapped_object_tpdo2
#define second_mapped_object_tpdo2
                                         (0x1A0102 + UINT32 + cRD + cWR
#define third_mapped_object_tpdo2
                                       (0x1A0103 + UINT32 + cRD + cWR
#define fourth_mapped_object_tpdo2
                                        (0x1A0104 + UINT32 + cRD + cWR
                                                                           }
#define transmit_pdo_mapping_tpdo3
                                         (0x1A0200 + UINT8 + cRD + cWR
                                                                           }
                                       (0x1A0201 + UINT32 + cRD + cWR
#define first_mapped_object_tpdo3
#define second_mapped_object_tpdo3
                                         (0x1A0202 + UINT32 + cRD + cWR
                                                                            }
                                       (0x1A0203 + UINT32 + cRD + cWR
\verb|#define third_mapped_object_tpdo3|
                                        (0x1A0204 + UINT32 + cRD + cWR
#define fourth_mapped_object_tpdo3
                                         (0x1A0300 + UINT8 + cRD + cWR
#define transmit_pdo_mapping_tpdo4
                                       (0x1A0301 + UINT32 + cRD + cWR
#define first_mapped_object_tpdo4
#define second_mapped_object_tpdo4
                                         (0x1A0302 + UINT32 + cRD + cWR
#define third_mapped_object_tpdo4
                                       (0x1A0303 + UINT32 + cRD + cWR
#define fourth_mapped_object_tpdo4
                                        (0x1A0304 + UINT32 + cRD + cWR
#define manufacturer_statuswords
                                      (0x200000 + UINT8 + cRD
                                                                     }
                                                                    + cPD0 }
#define manufacturer_statusword_1
                                       (0x200001 + UINT32 + cRD
#define manufacturer_status_masks
                                       (0x200500 + UINT8 + cRD
#define manufacturer_status_mask_1
                                        (0x200501 + UINT32 + cRD + cWR + cPD0)
                                      (0x200A00 + UINT8 + cRD
#define manufacturer_status_invert
#define manufacturer_status_invert_1
                                       (0x200A01 + UINT32 + cRD + cWR + cPD0)
                                   (0x200F00 + UINT16 + cRD
#define last_warning_code
                                     (0x201400 + UINT8 + cRD
#define todo1 transmit mask
#define tpdo1_transmit_mask_low
                                       (0x201401 + UINT32 + cRD + cWR
#define tpdo1_transmit_mask_high
                                       (0x201402 + UINT32 + cRD + cWR
#define tpdo2_transmit_mask
                                     (0x201500 + UINT8 + cRD
                                                                    }
#define tpdo2_transmit_mask_low
                                       (0x201501 + UINT32 + cRD + cWR
#define tpdo2_transmit_mask_high
                                       (0x201502 + UINT32 + cRD + cWR
```



```
(0x201600 + UINT8 + cRD
#define tpdo3_transmit_mask
#define tpdo3_transmit_mask_low
                                        (0x201601 + UINT32 + cRD + cWR
#define tpdo3_transmit_mask_high
                                        (0x201602 + UINT32 + cRD + cWR
#define tpdo4_transmit_mask
                                     (0x201700 + UINT8 + cRD
#define tpdo4_transmit_mask_low
                                        (0x201701 + UINT32 + cRD + cWR
#define tpdo4_transmit_mask_high
                                        (0x201702 + UINT32 + cRD + cWR
#define encoder_emulation_data
                                      (0x201A00 + UINT8 + cRD
#define encoder_emulation_resolution
                                        (0x201A01 + INT32 + cRD + cWR
                                      (0x201A02 + INT16 + cRD + cWR
#define encoder_emulation_offset
#define commutation_encoder_select
                                        (0x201F00 + INT16 + cRD + cWR
#define position_controller_resolution
                                       (0x202000 + UINT32 + cRD + cWR
#define position_encoder_selection
                                      (0x202100 + INT16 + cRD + cWR
#define synchronisation_encoder_selection
                                          (0x202200 + INT16 + cRD + cWR
                                      (0x202300 + UINT32 + cRD + cWR
#define synchronisation_filter_time
                                      (0x202400 + UINT8 + cRD
#define encoder x2a data field
#define encoder_x2a_resolution
                                      (0x202401 + UINT32 + cRD
#define encoder_x2a_numerator
                                      (0x202402 + INT16 + cRD + cWR
#define encoder_x2a_divisor
                                    (0x202403 + INT16 + cRD + cWR
                                      (0x202500 + UINT8 + cRD
#define encoder_x10_data_field
                                      (0x202501 + UINT32 + cRD + cWR
#define encoder_x10_resolution
#define encoder_x10_numerator
                                       (0x202502 + INT16 + cRD + cWR
#define encoder_x10_divisor
                                     (0x202503 + INT16 + cRD + cWR
                                     (0x202504 + UINT32 + cRD
                                                                  + cPD0 }
#define encoder_x10_counter
#define encoder_x2b_data_field
                                      (0x202600 + UINT8 + cRD
#define encoder_x2b_resolution
                                      (0x202601 + UINT32 + cRD + cWR
#define encoder_x2b_numerator
                                      (0x202602 + INT16 + cRD + cWR
#define encoder_x2b_divisor
                                    (0x202603 + INT16 + cRD + cWR
#define encoder_x2b_counter
                                     (0x202604 + UINT32 + cRD
                                                                  + cPD0 }
#define encoder_emulation_resolution
                                        (0x202800 + INT32 + cRD + cWR
                                        (0x202D00 + INT32 + cRD
#define position_demand_sync_value
                                        (0x202E00 + INT32 + cRD
#define velocity_demand_sync_value
                                                                        }
#define synchronisation_selector_data
                                        (0x202F00 + UINT8 + cRD
#define synchronisation_main
                                    (0x202F07 + UINT16 + cRD + cWR
                                                                        }
#define set_position_absolute
                                    (0x203000 + INT32)
                                                           + cWR
                                    (0x203A00 + UINT32 + cRD + cWR
#define torque_feed_forward
#define homing_timeout
                                  (0x204500 + UINT16 + cRD + cWR
#define sample_data
                                 (0x204A00 + UINT8 + cRD
#define sample mode
                                  (0x204A01 + UINT16 + cRD + cWR
#define sample_status
                                 (0x204A02 + UINT8 + cRD
                                                             + cPD0 }
#define sample_status_mask
                                     (0x204A03 + UINT8 + cRD + cWR + cPD0)
                                  (0x204A04 + UINT8
                                                        + cWR + cPD0 }
#define sample_control
#define sample_position_rising_edge
                                        (0x204A05 + INT32 + cRD
                                                                    + cPD0 1
#define sample_position_falling_edge
                                        (0x204A06 + INT32 + cRD
                                                                    + cPD0 }
#define velocity_display_filter_time
                                     (0x207300 + UINT32 + cRD + cWR
#define velocity_actual_value_filtered
                                      (0x207400 + INT32 + cRD)
                                                                   + cPD0 }
#define velocity_message
                                   (0x207800 + UINT8 + cRD
                                      (0x207801 + INT32 + cRD + cWR
#define message_target_velocity
#define message velocity window
                                       (0x207802 + INT16 + cRD + cWR
                                                                          }
                                 (0x209000 + UINT8 + cRD
#define velocity_ramps
#define velocity_rampe_enable
                                     (0x209001 + UINT8 + cRD + cWR
                                                                        }
                                      (0x209002 + INT32 + cRD + cWR
#define velocity_acceleration_pos
                                                                        }
                                      (0x209003 + INT32 + cRD + cWR
#define velocity_deceleration_pos
                                      (0x209004 + INT32 + cRD + cWR
#define velocity_acceleration_neg
                                      (0x209005 + INT32 + cRD + cWR
                                                                        }
#define velocity_deceleration_neg
#define error_management
                                    (0x210000 + UINT8 + cRD
#define error_number
                                 (0x210001 + UINT8 + cRD + cWR
#define error_reaction_code
                                    (0x210002 + UINT8 + cRD + cWR
```



```
(0x220000 + UINT32 + cRD + cWR
#define read_write_ko_nr
                                                                      }
#define read_ko
                               (0x220400 + UINT32 + cRD
#define write_ko
                               (0x221400 + UINT32
                                                      + cWR
                                                               }
#define read_ko_record
                                  (0x221500 + UINT8 + cRD
#define read_ko_demand_value
                                      (0x221501 + UINT32 + cRD
#define read_ko_actual_value
                                    (0x221502 + UINT32 + cRD
#define read_ko_minimum
                                    (0x221503 + UINT32 + cRD
                                                                    }
#define read_ko_maximum
                                    (0x221504 + UINT32 + cRD
                                                                    }
                                    (0x240000 + UINT8 + cRD
#define analog_input_voltage
                                                                   }
#define analog_input_voltage_ch_0
                                        (0x240001 + INT16 + cRD
#define analog_input_voltage_ch_1
                                       (0x240002 + INT16 + cRD
                                                                       }
\verb|#define analog_input_voltage_ch_2|
                                       (0x240003 + INT16 + cRD
#define analog_input_offset
                                   (0x240100 + UINT8 + cRD
                                      (0x240101 + INT32 + cRD + cWR
#define analog_input_offset_ch_0
#define analog_input_offset_ch_1
                                      (0x240102 + INT32 + cRD + cWR
#define analog_input_offset_ch_2
                                       (0x240103 + INT32 + cRD + cWR
#define current_limitation
                                 (0x241500 + UINT8 + cRD
#define limit_current_input_channel
                                      (0x241501 + INT8 + cRD + cWR
                               (0x241502 + INT32 + cRD + cWR
#define limit_current
                                 (0x241600 + UINT8 + cRD
#define speed_limitation
#define limit_speed_input_channel
                                      (0x241601 + INT8 + cRD + cWR
#define limit_speed
                               (0x241602 + INT32 + cRD + cWR
                                        (0x242000 + UINT8 + cRD
#define digital_outputs_state_mapping
#define dig_out_state_mapp_dout_1
                                         (0x242001 + UINT8 + cRD + cWR
#define dig_out_state_mapp_dout_2
                                         (0x242002 + UINT8 + cRD + cWR
                                         (0x242003 + UINT8 + cRD + cWR
#define dig_out_state_mapp_dout_3
#define dig_out_state_mapp_ea88_0_low
                                            (0x242011 + UINT32 + cRD + cWR
#define dig_out_state_mapp_ea88_0_high
                                            (0x242012 + UINT32 + cRD + cWR
                                    (0x2C0A00 + UINT8 + cRD
#define digital_inputs_low_byte
                               (0x603F00 + UINT16 + cRD
                                                           + cPD0 }
#define error_code
                                (0x604000 + UINT16 + cRD + cWR + cPD0)
#define controlword
#define statusword
                               (0x604100 + UINT16 + cRD
                                                           + cPD0 }
#define pole_number
                                 (0x604D00 + UINT8 + cRD + cWR + cPD0 }
                                      (0x605A00 + INT16 + cRD + cWR
#define quick_stop_option_code
#define shutdown_option_code
                                      (0x605B00 + INT16 + cRD + cWR
#define disable_operation_option_code
                                         (0x605C00 + INT16 + cRD + cWR
#define stop_option_code
                                   (0x605D00 + INT16 + cRD + cWR
#define fault_reaction_option_code
                                      (0x605E00 + INT16 + cRD + cWR
#define modes_of_operation
                                    (0x606000 + INT8 + cRD + cWR + cPD0 )
                                        (0x606100 + INT8 + cRD + cPD0 }
#define modes_of_operation_display
                                      (0x606200 + INT32 + cRD
#define position_demand_value
                                                                 + cPD0 }
#define position_actual_value*
                                    (0x606300 + INT32 + cRD
                                                               + cPD0 }
#define position_actual_value
                                    (0x606400 + INT32 + cRD
                                                              + cPD0 }
#define following_error_window
                                     (0x606500 + UINT32 + cRD + cWR + cPD0)
                                     (0x606600 + UINT16 + cRD + cWR + cPD0)
#define following_error_time_out
                                  (0x606700 + UINT32 + cRD + cWR + cPD0 }
#define position_window
                                     (0x606800 + UINT16 + cRD + cWR + cPD0)
#define position_window_time
#define velocity_sensor_actual_value
                                       (0x606900 + INT32 + cRD
                                                                   + cPD0 }
                                     (0x606A00 + INT16 + cRD + cWR + cPD0)
#define sensor_selection_code
#define velocity_demand_value
                                     (0x606B00 + INT32 + cRD + cPD0)
                                   (0x606C00 + INT32 + cRD + cPD0)
#define velocity_actual_value
                                  (0x606D00 + UINT16 + cRD + cWR + cPD0)
#define velocity window
                                    (0x606E00 + UINT16 + cRD + cWR + cPD0)
#define velocity_window_time
                                  (0x606F00 + UINT16 + cRD + cWR + cPD0 )
#define velocity threshold
#define velocity_threshold_time
                                     (0x607000 + UINT16 + cRD + cWR + cPD0)
#define target torque
                                (0x607100 + INT16 + cRD + cWR + cPD0)
                                (0x607200 + UINT16 + cRD + cWR + cPD0)
#define max_torque
```



```
(0x607300 + UINT16 + cRD + cWR + cPD0)
#define max_current
#define torque_demand_value
                                     (0x607400 + INT16 + cRD + cPD0)
                                    (0x607500 + UINT32 + cRD + cWR + cPD0)
#define motor_rated_current
#define motor_rated_torque
                                    (0x607600 + UINT32 + cRD + cWR + cPD0 )
                                    (0x607700 + INT16 + cRD
#define torque_actual_value
                                                               + cPD0 }
#define current_actual_value
                                    (0x607800 + INT16 + cRD + cPD0)
#define dc_link_circuit_voltage
                                    (0x607900 + UINT32 + cRD + cPD0)
#define target position
                                 (0x607A00 + INT32 + cRD + cWR + cPD0 )
                                   (0x607B00 + UINT8 + cRD
#define position_range_limit
#define min_position_range_limit
                                      (0x607B01 + INT32 + cRD + cWR + cPD0)
#define max_position_range_limit
                                      (0x607B02 + INT32 + cRD + cWR + cPD0)
#define home_offset
                                 (0x607C00 + INT32 + cRD + cWR + cPD0)
#define software_position_limit
                                    (0x607D00 + UINT8 + cRD
#define min_position_limit
                                   (0x607D01 + INT32 + cRD + cWR + cPD0)
#define max_position_limit
                                   (0x607D02 + INT32 + cRD + cWR + cPD0)
                             (0x607E00 + UINT8 + cRD + cWR + cPD0)
#define polarity
#define max_motor_speed
                                    (0x608000 + UINT16 + cRD + cWR + cPD0)
#define profile_velocity
                                (0x608100 + UINT32 + cRD + cWR + cPD0)
                                (0x608200 + UINT32 + cRD + cWR + cPD0 }
#define end velocity
#define profile_acceleration
                                   (0x608300 + UINT32 + cRD + cWR + cPD0)
#define profile_deceleration
                                   (0x608400 + UINT32 + cRD + cWR + cPD0)
#define quick_stop_deceleration
                                     (0x608500 + UINT32 + cRD + cWR + cPD0)
                                   (0x608600 + INT16 + cRD + cWR + cPD0)
#define motion_profile_type
#define torque_slope
                                 (0x608700 + UINT32 + cRD + cWR + cPD0)
#define torque_profile_type
                                   (0x608800 + INT16 + cRD + cWR + cPD0)
                                     (0x608900 + INT8 + cRD + cWR + cPD0)
#define position_notation_index
                                      (0x608A00 + UINT8 + cRD + cWR + cPD0)
#define position_dimension_index
#define velocity_notation_index
                                     (0x608B00 + INT8 + cRD + cWR + cPD0)
                                      (0x608C00 + UINT8 + cRD + cWR + cPD0 )
#define velocity_dimension_index
                                       (0x608D00 + INT8 + cRD + cWR + cPD0 }
#define acceleration_notation_index
                                        (0x608E00 + UINT8 + cRD + cWR + cPD0)
#define acceleration_dimension_index
#define position_encoder_resolution
                                       (0x608F00 + UINT8 + cRD
#define encoder_increments
                                    (0x608F01 + UINT32 + cRD + cWR + cPD0)
                                   (0x608F02 + UINT32 + cRD + cWR + cPD0)
#define motor_revolutions
#define velocity_encoder_resolution
                                       (0x609000 + UINT8 + cRD
#define encoder_increments_per_second
                                           (0x609001 + UINT32 + cRD + cWR + cPD0)
#define motor_revolutions_per_second
                                         (0x609002 + UINT32 + cRD + cWR + cPD0)
#define gear ratio
                               (0x609100 + UINT8 + cRD
#define motor_revolutions
                                   (0x609101 + UINT32 + cRD + cWR + cPD0)
                                  (0x609102 + UINT32 + cRD + cWR + cPD0)
#define shaft_revolutions
#define feed constant
                                 (0x609200 + UINT8 + cRD
#define feed
                             (0x609201 + UINT32 + cRD + cWR + cPD0)
#define shaft_revolutions
                                  (0x609202 + UINT32 + cRD + cWR + cPD0)
#define position_factor
                                 (0x609300 + UINT8 + cRD
                                                                }
                               (0x609301 + UINT32 + cRD + cWR + cPD0)
#define numerator
                             (0x609302 + UINT32 + cRD + cWR + cPD0)
#define divisor
#define velocity_encoder_factor
                                     (0x609400 + UINT8 + cRD
#define numerator
                               (0x609401 + UINT32 + cRD + cWR + cPD0)
                             (0x609402 + UINT32 + cRD + cWR + cPD0)
#define divisor
#define velocity_factor_1
                                  (0x609500 + UINT8 + cRD
                                (0x609501 + UINT32 + cRD + cWR + cPD0)
#define numerator
#define divisor
                             (0x609502 + UINT32 + cRD + cWR + cPD0)
#define velocity_factor_2
                                  (0x609600 + UINT8 + cRD
#define numerator
                                (0x609601 + UINT32 + cRD + cWR + cPD0)
#define divisor
                             (0x609602 + UINT32 + cRD + cWR + cPD0)
#define acceleration_factor
                                   (0x609700 + UINT8 + cRD
                                (0x609701 + UINT32 + cRD + cWR + cPD0)
#define numerator
```



```
(0x609702 + UINT32 + cRD + cWR + cPD0)
#define divisor
#define homing_method
                                   (0x609800 + INT8 + cRD + cWR + cPD0)
#define homing_speeds
                                   (0x609900 + UINT8 + cRD
                                                                  }
                                          (0x609901 + UINT32 + cRD + cWR + cPD0 }
#define speed_during_search_for_switch
                                          (0x609902 + UINT32 + cRD + cWR + cPD0)
#define speed_during_search_for_zero
                                    (0x609A00 + UINT32 + cRD + cWR + cPD0 )
#define homing_acceleration
#define interpolation_submode_select
                                        (0x60C000 + INT16 + cRD + cWR + cPD0)
#define interpolation_data_record
                                      (0x60C100 + UINT8 + cRD
                                  (0x60C101 + INT32 + cRD + cWR + cPD0)
#define ip_data_position
#define ip_data_controlword
                                    (0x60C102 + UINT8 + cRD + cWR + cPD0)
#define interpolation_time_period
                                      (0x60C200 + UINT8 + cRD
#define ip_time_units
                                 (0x60C201 + UINT8 + cRD + cWR + cPD0)
#define ip_time_index
                                 (0x60C202 + INT8 + cRD + cWR + cPD0)
                                      (0x60C300 + UINT8 + cRD
#define interpolation_sync_definition
#define syncronize_on_group
                                     (0x60C301 + UINT8 + cRD + cWR + cPD0)
                                      (0x60C302 + UINT8 + cRD + cWR + cPD0 }
#define ip_sync_every_n_event
#define interpolation_data_configuration
                                        (0x60C400 + UINT8 + cRD + cPD0)
#define max_buffer_size
                                  (0x60C401 + UINT32 + cRD
                               (0x60C402 + UINT32 + cRD + cWR + cPD0 }
#define actual size
                                   (0x60C403 + UINT8 + cRD + cWR + cPD0)
#define buffer_organisation
#define buffer_position
                                 (0x60C404 + UINT16 + cRD + cWR + cPD0 )
#define size_of_data_record
                                    (0x60C405 + UINT8
                                                           + cWR + cPD0 }
                                (0x60C406 + UINT8)
                                                       + cWR + cPDO }
#define buffer clear
#define torque_control_parameters
                                       (0x60F600 + UINT8 + cRD
#define torque_control_gain
                                    (0x60F601 + UINT16 + cRD + cWR
                                    (0x60F602 + UINT16 + cRD + cWR
#define torque control time
#define velocity_control_parameter_set
                                        (0x60F900 + UINT8 + cRD
#define velocity_control_gain
                                    (0x60F901 + UINT16 + cRD + cWR
#define velocity_control_time
                                    (0x60F902 + UINT16 + cRD + cWR
                                     (0x60F904 + UINT16 + cRD + cWR
#define velocity_control_filter_time
                                (0x60FA00 + INT32 + cRD
                                                            + cPD0 }
#define control effort
#define position_control_parameter_set
                                         (0x60FB00 + UINT8 + cRD
#define position_control_gain
                                    (0x60FB01 + UINT16 + cRD + cWR
                                                                        }
                                    (0x60FB02 + UINT16 + cRD + cWR
#define position_control_time
#define position_control_v_max
                                      (0x60FB04 + UINT32 + cRD + cWR
#define position_error_tolerance_window
                                          (0x60FB05 + UINT32 + cRD + cWR
#define digital_inputs
                                (0x60FD00 + UINT32 + cRD + cPD0)
#define digital_outputs
                                 (0x60FE00 + UINT8 + cRD
                                                                }
#define digital_outputs_data
                                    (0x60FE01 + UINT32 + cRD + cWR + cPD0)
                                    (0x60FE02 + UINT32 + cRD + cWR + cPD0 )
#define digital_outputs_mask
                                 (0x60FF00 + INT32 + cRD + cWR + cPD0 )
#define target velocity
#define motor_type
                                (0x640200 + UINT16 + cRD
                                                              + cPDO }
#define motor_data
                                (0x641000 + UINT8 + cRD
#define iit_time_motor
                                 (0x641003 + UINT16 + cRD + cWR
#define iit_ratio_motor
                                 (0x641004 + UINT16 + cRD
                                 (0x641010 + UINT16 + cRD + cWR)
#define phase_order
                                     (0x641011 + INT16 + cRD + cWR + cPD0)
#define encoder_offset_angle
#define motor_temperature_sensor_polarity
                                          (0x641014 + INT16 + cRD + cWR + cPD0)
                                      (0x650200 + UINT32 + cRD
                                                                   + cPD0 }
#define supported_drive_modes
#define drive_data
                               (0x651000 + UINT8 + cRD
                                 (0x651001 + UINT32 + cRD
#define serial_number
                                                                  }
                                (0x651002 + UINT32 + cRD
#define drive code
                                                                }
                                      (0x651003 + INT16 + cRD + cWR
#define user_variable_not_saved
#define user_variable_saved
                                    (0x651004 + INT16 + cRD + cWR
#define enable_logic
                                 (0x651010 + UINT16 + cRD + cWR
                                   (0x651011 + INT16 + cRD + cWR
#define limit switch polarity
                                    (0x651012 + INT16 + cRD + cWR
#define limit_switch_selector
```



```
(0x651013 + INT16 + cRD + cWR
#define homing_switch_selector
#define homing_switch_polarity
                                  (0x651014 + INT16 + cRD + cWR
                                  (0x651015 + INT32 + cRD + cWR
#define limit_switch_deceleration
#define brake_delay_time
                                (0x651018 + UINT16 + cRD + cWR
                                  (0x651019 + UINT16 + cRD + cWR }
#define automatic_brake_delay
#define position_range_limit_enable
                                   (0x651020 + UINT16 + cRD + cWR )
#define position_error_switch_off_limit
                                    (0x651022 + UINT32 + cRD + cWR
#define motor_temperature
                                (0x65102E + INT16 + cRD + cPD0)
#define max_motor_temperature
                                   (0x65102F + INT16 + cRD + cWR)
#define pwm_frequency
                                (0x651030 + UINT16 + cRD + cWR)
#define power_stage_temperature
                                    (0x651031 + INT16 + cRD + cPD0)
                                      (0x651032 + INT16 + cRD
#define max_power_stage_temperature
#define nominal_dc_link_circuit_voltage
                                     (0x651033 + UINT32 + cRD
                                    (0x651034 + UINT32 + cRD
                                                              + cPD0 }
#define actual_dc_link_circuit_voltage
#define max_dc_link_circuit_voltage
                                    (0x651035 + UINT32 + cRD
                                                                 }
                                   (0x651036 + UINT32 + cRD + cWR
#define min_dc_link_circuit_voltage
#define enable_dc_link_undervoltage_error (0x651037 + UINT16 + cRD + cWR
#define iit_error_enable
                     (0x651038 + UINT16 + cRD + cWR)
                                    (0x65103A + UINT16 + cRD + cWR
#define enable_enhanced_modulation
                       (0x65103D + UINT16 + cRD + cPD0)
#define iit_ratio_servo
#define nominal_current
                             (0x651040 + UINT32 + cRD
#define peak_current
                              (0x651041 + UINT32 + cRD
                                                           }
#define drive_serial_number
                                (0x6510A0 + UINT32 + cRD
#define drive_type
                            (0x6510A1 + UINT32 + cRD
#define drive_revision
                             (0x6510A2 + UINT32 + cRD
#define encoder_serial_number
                                  (0x6510A3 + UINT32 + cRD
#define encoder_type
                              (0x6510A4 + UINT32 + cRD
                                                           }
#define encoder_revision
                              (0x6510A5 + UINT32 + cRD
                                  (0x6510A6 + UINT32 + cRD
#define module_serial_number
                              (0x6510A7 + UINT32 + cRD
#define module_type
                                                           }
                               (0x6510A8 + UINT32 + cRD
#define module_revision
#define firmware_main_version
                                  (0x6510A9 + UINT32 + cRD
#define firmware_custom_version
                                   (0x6510AA + UINT32 + cRD
                              (0x6510AB + UINT32 + cRD
#define mdc_version
                                                           }
#define firmware_type
                              (0x6510AC + UINT32 + cRD
#define km_release
                              (0x6510AD + UINT32 + cRD
#define cycletime_current_controller
                                   (0x6510B0 + UINT32 + cRD
#define cycletime_velocity_controller
                                   (0x6510B1 + UINT32 + cRD
#define cycletime_position_controller
                                   (0x6510B2 + UINT32 + cRD
                                    (0x6510B3 + UINT32 + cRD
#define cycletime_trajectory_generator
                              (0x6510B8 + UINT32 + cRD
#define device current
                                                           }
                                 (0x6510C0 + UINT32 + cRD + cWR )
#define commissioning_state
#define compatibility_control
                                (0x6510F0 + UINT16 + cRD + cWR
'magic' word for loading parameter
#define cLOAD 0x64616F6C
#define cSAVE 0x65766173
  modes of operation
#define cPositionMode 0x01
#define cVelocityMode
#define cTorqueMode
                    0x04
#define cHomingMode
                   0x06
```


#define cInterpolatedMode 0x07 #define cUnknownMode OxFF /* digital inputs #define cEND0 0x00000001 /* negativer Endschalter #define cEND1 0x00000002 /* positiver Endschalter #define cHOME_SAMPLE 0x00000004 /* Home / Sample #define cPOS1 0x02000000 /* Digital Input Target selector */ */ */ #define cSTART 0x10000000 #define cSAMPLE 0x20000000 /* ----- Definition nach Steckerbenamung ------*/ #define cDINO cPOSO #define cDIN1 cPOS1 #define cDIN2 cPOS2 #define cDIN3 cPOS3 #define cDIN5 cLOCK #define cDIN6 cEND0 #define cDIN7 cEND1 #define cDIN8 cSTART #define cDIN9 cSAMPLE /*************************/ /* controlword */ #define cwSHUT_DOWN 0x0006 #define cwSWITCH_ON 0x0007 #define cwDISABLE_VOLTAGE 0x0000 #define cwQUICK_STOP 0x0002 #define cwDISABLE_OPERATION 0x0007 #define cwENABLE_OPERATION 0x000F #define cwNEW_SET_POINT 0x0010 #define cwSTART_HOMING_OPERATION 0x0010 #define cwENABLE_IP_MODE 0x0010 #define cwCHANGE_SET_IMMEDIATLY 0x0020 #define cwABSOLUTE_RELATIV 0x0040 #define cwHOLD 0x0100 /* statusword /* state definition */ #define cdNOT_READY_TO_SWITCH_ON 0x0000 #define cdSWITCHED ON DISABLED 0x0040 #define cdREADY_TO_SWITCH_ON 0x0021 #define cdSWITCHED_ON 0x0023 #define cdOPERATION_ENABLED 0x0027 #define cdFAULT 0x000F #define cdFAULT_REACTION_ACTIVE 0x000F

#define cdQUICK_STOP_ACTIVE 0x0007

/* Bits of staus word */ #define swVOLTAGE_DISABLED 0x0010 #define swSWITCH_ON_DISABLED 0x0040 #define swWARNING 0x0080 #define swREMOTE 0x0200 #define swTARGET_REACHED 0x0400 #define swINTERNAL_LIMIT_ACTIVE 0x0800 #define swSET_POINT_ACKNOWLEDGE 0x1000 #define swSPEED0 0x1000 #define swHOMING_ATTAINED 0x1000 #define swIP_MODE_ACTIVE 0x1000 #define swFOLLOWING_ERROR 0x2000 #define swHOMING_ERROR 0x2000

/* position modes */

#define pCONTINOUS 0x0000
#define pIMMEDIATE 0x0020
#define pABSOLUTE 0x0000
#define pRELATIVE 0x0040

/* motion profile types */
#define mpLINEAR 0

10 Stichwortverzeichnis

7		В	
7-Segment-Anzeige		D	
,A' in der	177	Beschleunigung	
,A III dei	177	bei der Referenzfahrt	21
		beim Positionieren	227
Α		Brems- (Positionieren)	227
		Schnellstop- (Positionieren)	228
A	477	Betriebsart	207, 208
A in 7-Segment-Anzeige		Ändern der	207
acceleration_factor		Drehzahlregelung	244
actual_dc_link_circuit_voltage		Einstellen der	206
actual_size		Lesen der	208
Aktuelle Zwischenkreisspannung		Momentenregeln	25
analog_input_offset		Positionieren	223
analog_input_offset_ch_0		Referenzfahrt	210
analog_input_offset_ch_1		brake_delay_time	168
analog_input_offset_ch_2		Bremse	
analog_input_voltage		Verzögerungszeit	168
analog_input_voltage_ch_0		Bremsverzögerungszeit	168
analog_input_voltage_ch_1		buffer_clear	240
analog_input_voltage_ch_2		buffer_organisation	239
Analoge Eingänge		buffer_position	
Eingangsspannung Kanal 0		-	
Eingangsspannung Kanal 1			
Eingangsspannung Kanal 2		С	
Eingangsspannungen	149		
Offsetspannung Kanal O	151	CAN-Interface	
Offsetspannung Kanal 1	151		2.
Offsetspannung Kanal 2	151	Anschlußbelegung	
Offsetspannungen	151	Kenndaten des	
Anschlag	220, 221	cob_id_sync	
Anschlußbelegung	24	cob_id_used_by_pdo	
Antrieb referenziert	198	commissioning_state	
Anzahl gemappter Objekte	44	commutation_encoder_select	
Auswahl der Istwert Lage	145	commutation_valid	
Auswahl der Synchronisationsquelle	146	compatibility_control	

controlword	187	Quelle	130
Bitbelegung	188	Skalierung	130
Kommandos	188	Sollwert	130
Objektbeschreibung	187	Drehzahl-Istwert	249
Controlword für Interpolationsdaten	235	Drehzahlregelung	244
current_actual_value	262	Drehzahl-Sollwert	248
current_limitation	129	Geschwindigkeitssensor-Auswahl	248
cycletime_current_controller	174	Max. Motordrehzahl	253
cycletime_position_controller	175	Sollgeschwindigkeit	253
cycletime_tracectory_generator	176	Stillstandsschwelle	252
cycletime_velocity_controller	175	Stillstandsschwellenzeit	252
		Zielfenster	251
Б		Zielfensterzeit	251
U		Zielgeschwindigkeit	253
		Drehzahlregler	109
dc_link_circuit_voltage	263	Filterzeitkonstante	
Default-Parameter laden		Parameter	110
Device Control		Verstärkung	110
dig_out_state_mapp_dout_1		Zeitkonstante	110
dig_out_state_mapp_dout_2		Drehzahl-Sollwert	248
dig_out_state_mapp_dout_3		drive_data88, 103, 107, 124, 1	26, 158, 168, 171
digital_inputs		drive_serial_number	171
digital_outputs		drive_type	171
digital_outputs_data		Durchdrehschutz	109
digital_outputs_mask			
digital_outputs_state_mapping		Г	
Digitale Ausgänge		E	
Mapping von DOUT1	156		
Mapping von DOUT2		Eingänge, analoge	149
Mapping von DOUT3		Einstellen der Betriebsart	
Digitale Ausgänge		EMERGENCY	
Mapping		EMERGENCY-Message	
Maske		Aufbau der	
Zustände		enable_dc_link_undervoltage_error	
Digitale Eingänge		enable_enhanced_modulation	
disable_operation_option_code		enable_logic	
divisor		encoder_emulation_data	
acceleration_factor	83	encoder_emulation_offset	
position_factor		encoder_emulation_resolution	
velocity_encoder_factor		encoder_offset_angle	
Drehzahlanzeige		encoder_x10_counter	
Filter	111	encoder_x10_data_field	
Drehzahlanzeige, gefiltert		encoder_x10_divisor	
Drehzahlbegrenzter Momentenbetrieb		encoder_x10_numerator	
Drehzahlbegrenzung		encoder_x10_resolution	
2.0.12s.1100gr0112dr1g	100	500d51_A15_10001dt011	100

encoder_x2a_data_field	134	Fault	184
encoder_x2a_divisor	134	Fault Reaction Active	184
encoder_x2a_numerator	134	fault_reaction_option_code	205
encoder_x2a_resolution	134	Fehler	
encoder_x2b_counter	136	'A' in 7-Segment-Anzeige	177
encoder_x2b_data_field	135	Reglerfehler	51
encoder_x2b_divisor	136	SDO-Fehlermeldungen	33
encoder_x2b_numerator	135	Fehlermanagement	179
encoder_x2b_resolution	135	Fehlernummer	179
end_velocity	226	Fehlerreaktion	179
Endgeschwindigkeit	226	Fehlerregister	51
Endschalter	158, 216, 218	Filterzeitkonstante Synchrondrehzahl	148
Nothalt-Rampe	161	firmware_custom_version	172
Polarität	158	firmware_main_version	172
Tauschen der	159	firmware_type	174
Endstufenfreigabe	88	first_mapped_object	44
Endstufenparameter	88	Following_error	112
Freigabelogik	88	following_error_time_out	122
Gerätenennspannung	91	following_error_window	121
Gerätenennstrom	96	fourth_mapped_object	45
max. Zwischenkreisspannung	93	Freigabelogik	88
Maximale Temperatur	91		
Maximalstrom	97	0	
min. Zwischenkreisspannung	94	G	
PWM-Frequenz	89		
Temperatur	90	Gerätenennspannung	91
Zwischenkreisspannung	93	Gerätenennstrom	
Endstufen-Temperatur	90	Gerätesteuerung	
Error Control Protocol		Gerätetyp	
Heartbeat	60, 61	Geschwindigkeit	
Node guarding	63	bei der Referenzfahrt	213
error_management	179	beim Positionieren	
error_number	179	End- (Positionieren)	
error_reaction_code	179	Geschwindigkeitssensor-Auswahl	
Erweiterte Sinusmodulation	89	Grenzwert Schleppfehler	
		guard_time	
_		gaa o	
F			
		Н	
Factor Group	75		
acceleration_factor	83	Heartbeat	60, 61
polarity	86	Herstellercode	169
position_factor	77	Herstellerspezifische Statuswort-Invertierung 1	202
velocity_encoder_factor	80	Herstellerspezifische Statuswort-Maske 1	201
Fahrkurven-Generator	223	Herstellerspezifisches Statuswort 1	198

home_offset	212	Istposition setzen	127
homing mode		Istwert	
home_offset	212	Lage in position_units (position_actual_value)	120
homing_acceleration	215	Moment (torque_actual_value)	262
homing_method	212		
homing_speeds	213	I/	
Homing Mode	210	K	
homing_acceleration	215		
homing_method	212	km_release	173
homing_speeds	213	Kommutiergeberselektion	
homing_switch_polarity	160	Kommutierlage gültig	
homing_switch_selector	161	Korrekturgeschwindigkeit	
homing_timeout	215		
1		L	
		Lage-Istwert (position units)	120
I ² t-Auslastung	102	Lageregler	112
I ² t-Zeit	102	Ausgang des	
Identifier		Parameter	
NMT-Service	57	Totbereich	117
Identifier für PDO	42	Verstärkung	117
Identitfizierung des Geräts	169	Zeitkonstante	117
identity_object	169	Lagereglerausgang	122
iit_error_enable	103	Lageregler-Parameter	
iit_ratio_motor	102	Lagereglerverstärkung	
iit_time_motor	102	Lagereglerzeitkonstante	
iit-Fehler auslösen	103	Lagesollwert (position units)	
inhibit_time	42	Lagewert Interpolation	
Inkrementalgeberemulation		last_warning_code	
Auflösung	141, 142	Letzte Warnung	180
Offset	141	limit_current	
interpolation_data_configuration	238	limit_current_input_channel	,
interpolation_data_record	235	limit_speed_input_channel	
interpolation_submode_select	234	limit_switch_deceleration	
interpolation_sync_definition	237	limit_switch_polarity	
interpolation_time_period	236	limit_switch_selector	
Interpolations-Daten	235		
Interpolations-Typ	234		
ip_data_controlword	235	M	
ip_data_position	235		
ip_sync every n event	237	manufacturer_status_invert	200
ip_time_index	236	manufacturer_status_invert_1	
ip_time_units	236	manufacturer_status_mask_1	
is_referenced	198	manufacturer_status_masks	

manufacturer_statusword_1	198	Motornennstrom	99
Bitbelegung	198	Motorparameter	
manufacturer_statuswords	198	I ² t-Zeit	102
Mappingparameter für PDOs	43	Nennstrom	99
Max. Motor-Temperatur	107	Pol(paar)zahl	101
max_buffer_size	239	Resolveroffsetwinkel	105
max_current	100	Spitzenstrom	100
max_dc_link_circuit_voltage	93	Motorspitzenstrom	100
max_motor_speed	253	Motor-Temperatur	107
max_motor_temperature	107		
max_position_range_limit	125	N1	
max_power_stage_temperature	91	N	
max_torque	260		
Maximale Endstufentemperatur	91	Nennmoment des Motors	261
Maximale Motordrehzahl	253	Nennstrom	
Maximale Zwischenkreisspannung	93	Motor	99
Maximales Moment	260	Netzwerkmanagement	
Maximalstrom	97	Neue Position anfahren	
min_dc_link_circuit_voltage	94	NMT-Service	
min_position_range_limit	125	Nodeguarding	
Minimale Zwischenkreisspannung	94	guard_time	
modes_of_operation	207	life_time_factor	
modes_of_operation_display	208	nominal_current	
Momentenbegrenzter Drehzahlbetrieb	129	nominal_dc_link_circuit_voltage	
Momentenbegrenzung	129	Not Ready to Switch On	
Quelle	129	Nullimpuls	
Skalierung	129	Nullpunkt-Offset	
Sollwert	129	number_of_mapped_objects	44
Momenten-Istwert	262	numerator	
Momentenregeln	257	acceleration_factor	83
Momentenregelung		position_factor	
Max. Moment	260	velocity_encoder_factor	
Momenten-Istwert	262	•	
Nennmoment	261		
Sollmoment	259	Ü	
Sollwertprofil	264		
Stromsollwert	261	Objekte	
Zielmoment	259	Objekt 1000 _h	66
motion_profile_type	228	Objekt 1001 _h	
motor_data	102, 105	Objekt 1002h	
motor_rated_current	99	Objekt 1003h	
motor_rated_torque	261	Objekt 1003 _h _01 _h	
motor_temperature	107	Objekt 1003 _h _07 _h	
motor_temperature_sensor_polarity	106	Objekt 1003 _h _03 _h	
Motoranpassung	98	Objekt 1003h_03h	
		ODJUNE 100011_0411	00

Objekt 1005 _h	50	Objekt 200F _h	180
Objekt 1006 _h	66	Objekt 2014 _h	47
Objekt 1007 _h	66	Objekt 2015 _h	47
Objekt 100C _h	64	Objekt 2016 _h	47
Objekt 100D _h	65	Objekt 2017 _h	47
Objekt 1010 _h	71	Objekt 201A _h	141
Objekt 1010 _h _01 _h	71	Objekt 201A _h _01 _h	141
Objekt 1011 _h	70	Objekt 201A _h _02 _h	141
Objekt 1011 _h _01 _h	70	Objekt 201F _h	143
Objekt 1017 _h	61	Objekt 2021 _h	145
Objekt 1018 _h	169	Objekt 2022 _h	146
Objekt 1018 _h _01 _h	169	Objekt 2023 _h	148
Objekt 1018 _h _02 _h	169	Objekt 2024 _h	134
Objekt 1018 _h _03 _h	170	Objekt 2024 _h _01 _h	134
Objekt 1018 _h _04 _h	170	Objekt 2024 _h _02 _h	134
Objekt 1400h	48	Objekt 2024 _h _03 _h	134
Objekt 1401 _h	48	Objekt 2025 _h	138
Objekt 1402 _h	48	Objekt 2025 _h _01 _h	138
Objekt 1403 _h	48	Objekt 2025 _h _02 _h	138
Objekt 1600h	48	Objekt 2025 _h _03 _h	138
Objekt 1601 _h	48	Objekt 2025 _h _04 _h	139
Objekt 1602 _h	48	Objekt 2026 _h	135
Objekt 1603 _h	48	Objekt 2026 _h _01 _h	135
Objekt 1800h	42, 46	Objekt 2026 _h _02 _h	135
Objekt 1800 _h _01 _h	42	Objekt 2026 _h _03 _h	136
Objekt 1800 _h _02 _h	42	Objekt 2026 _h _04 _h	136
Objekt 1800 _h _03 _h	42	Objekt 2028 _h	142
Objekt 1801h	46	Objekt 202D _h	119
Objekt 1802 _h	46	Objekt 202E _h	249
Objekt 1803 _h	47	Objekt 202F _h	147
Objekt 1A00h	43, 46	Objekt 202F _h _07 _h	147
Objekt 1A00 _h _00 _h	44	Objekt 2030 _h	127
Objekt 1A00 _h _01 _h	44	Objekt 2045 _h	215
Objekt 1A00 _h _02 _h	44	Objekt 204A _h	163
Objekt 1A00 _h _03 _h	44	Objekt 204A _h _01 _h	163
Objekt 1A00 _h _04 _h	45	Objekt 204A _h _02 _h	164
Objekt 1A01h	46	Objekt 204A _h _03 _h	165
Objekt 1A02 _h	46	Objekt 204A _h _04 _h	165
Objekt 1A03 _h	47	Objekt 204A _h _05 _h	166
Objekt 2000 _h		Objekt 204A _h _06 _h	
Objekt 2000 _h _01 _h		Objekt 2073 _h	
Objekt 2005 _h		Objekt 2074 _h	
Objekt 2005 _h _01 _h		Objekt 2090 _h	
Objekt 200A _h		Objekt 2090 _h _01 _h	
Objekt 200A _h _01 _h		Objekt 2090 _h _02 _h	

Objekt 2090 _h _03 _h	256	Objekt 606F _h	252
Objekt 2090 _h _04 _h	256	Objekt 6070 _h	252
Objekt 2090 _h _05 _h	256	Objekt 6071 _h	259
Objekt 2100 _h	179	Objekt 6072 _h	260
Objekt 2100 _h _01 _h	179	Objekt 6073 _h	100
Objekt 2100 _h _02 _h	179	Objekt 6074 _h	261
Objekt 2400 _h	149	Objekt 6075 _h	99
Objekt 2400h_01h	149	Objekt 6076 _h	261
Objekt 2400h_02h	150	Objekt 6077 _h	262
Objekt 2400 _h _03 _h	150	Objekt 6078 _h	262
Objekt 2401 _h	151	Objekt 6079 _h	263
Objekt 2401 _h _01 _h	151	Objekt 607A _h	224
Objekt 2401 _h _02 _h	151	Objekt 607B _h	125
Objekt 2401 _h _03 _h	151	Objekt 607B _h _01 _h	125
Objekt 2415 _h	129	Objekt 607B _h _02 _h	125
Objekt 2415 _h _01 _h		Objekt 607C _h	
Objekt 2415 _h _02 _h		Objekt 607E _h	86
Objekt 2416 _h		Objekt 6080 _h	
Objekt 2416 _h _01 _h		Objekt 6081 _h	
Objekt 2416 _h _02 _h	130	Objekt 6082 _h	
Objekt 2420 _h		Objekt 6083 _h	
Objekt 2420 _h _01 _h		Objekt 6084 _h	
Objekt 2420 _h _02 _h		Objekt 6085 _h	
Objekt 2420 _h _03 _h		Objekt 6086 _h	228
Objekt 6040 _h		Objekt 6087 _h	263
Objekt 6041 _h	193	Objekt 6088 _h	264
Objekt 604D _h	101	Objekt 6093 _h	77
Objekt 605A _h	204	Objekt 6093 _h _01 _h	77
Objekt 605B _h	203	Objekt 6093 _h _02 _h	77
Objekt 605Ch	204	Objekt 6094 _h	80
Objekt 605E _h		Objekt 6094 _h _01 _h	
Objekt 6060h	207	Objekt 6094 _h _02 _h	80
Objekt 6061 _h	208	Objekt 6097 _h	83
Objekt 6062 _h	118	Objekt 6097 _h _01 _h	
Objekt 6064 _h	120	Objekt 6097 _h _02 _h	
Objekt 6065 _h	121	Objekt 6098 _h	212
Objekt 6066 _h		Objekt 6099 _h	
Objekt 6067 _h		Objekt 6099 _h _01 _h	
Objekt 6068 _h		Objekt 6099 _h _02 _h	
Objekt 6069 _h		Objekt 609A _h	
Objekt 606A _h		Objekt 60CO _h	
Objekt 606B _h		Objekt 60C1 _h	
Objekt 606Ch		Objekt 60C1 _h _01 _h	
Objekt 606D _h		Objekt 60C1 _h _02 _h	
Objekt 606E _h		Objekt 60C2 _h	

Objekt 60C2 _h _01 _h	236	Objekt 6510 _h _20 _h	126
Objekt 60C2 _h _02 _h	236	Objekt 6510 _h _22 _h	124
Objekt 60C3 _h	237	Objekt 6510 _h _2E _h	107
Objekt 60C3 _h _01 _h	237	Objekt 6510 _h _2F _h	107
Objekt 60C3 _h _02 _h	237	Objekt 6510 _h _30 _h	89
Objekt 60C4 _h	238	Objekt 6510 _h _31 _h	90
Objekt 60C4 _h _01 _h	239	Objekt 6510 _h _32 _h	91
Objekt 60C4 _h _02 _h	239	Objekt 6510 _h _33 _h	91
Objekt 60C4 _h _03 _h	239	Objekt 6510 _h _34 _h	93
Objekt 60C4 _h _04 _h	240	Objekt 6510 _h _35 _h	93
Objekt 60C4 _h _05 _h	240	Objekt 6510 _h _36 _h	94
Objekt 60C4 _h _06 _h	240	Objekt 6510 _h _37 _h	94
Objekt 60F6 _h	108	Objekt 6510 _h _38 _h	103
Objekt 60F6 _h _01 _h	108	Objekt 6510 _h _3A _h	89
Objekt 60F6 _h _02 _h	108	Objekt 6510 _h _40 _h	96
Objekt 60F9 _h	110	Objekt 6510 _h _41 _h	97
Objekt 60F9 _h _01 _h	110	Objekt 6510 _h _A0 _h	171
Objekt 60F9 _h _02 _h	110	Objekt 6510 _h _A1 _h	171
Objekt 60F9 _h _04 _h	110	Objekt 6510 _h _A9 _h	172
Objekt 60FA _h	122	Objekt 6510 _h _AA _h	172
Objekt 60FBh	117	Objekt 6510 _h _AC _h	174
Objekt 60FBh_01h	117	Objekt 6510 _h _AD _h	173
Objekt 60FBh_02h	117	Objekt 6510 _h _B0 _h	174
Objekt 60FB _h _04 _h	117	Objekt 6510 _h _B1 _h	175
Objekt 60FB _h _05 _h	117	Objekt 6510 _h _B2 _h	175
Objekt 60FD _h	153	Objekt 6510 _h _B3 _h	176
Objekt 60FE _h	154	Objekt 6510 _h _CO _h	177
Objekt 60FE _h _01 _h	154	Objekt 6510 _h _F0 _h	72
Objekt 60FE _h _02 _h	154	Offset des Winkelgebers	105
Objekt 60FF _h	253	Operation enable	184
Objekt 6410 _h	102, 105		
Objekt 6410 _h _03 _h	102	D	
Objekt 6410 _h _04 _h	102	Р	
Objekt 6410 _h _10 _h	104		
Objekt 6410 _h _11 _h	105	Parameter einstellen	66
Objekt 6410 _h _11 _h	105	Parametersatz sichern	71
Objekt 6410 _h _14 _h	106	Parametersätze	
$Objekt6510_h88,103,107,124,126,$	158, 168, 171	Defaultwerte laden	70
Objekt 6510 _h _10 _h	88	Laden und Speichern	66
Objekt 6510 _h _11 _h	158	Parametersatz sichern	
Objekt 6510 _h _12 _h	159	Parametrierstatus	
Objekt 6510 _h _13 _h	161	PDO	
Objekt 6510 _h _14 _h	160	1. eingetragenes Objekt	,
Objekt 6510 _h _15 _h	161	2. eingetragenes Objekt	
Objekt 6510 _h _18 _h	168	3. eingetragenes Objekt	

4. eingetragenes Objekt	45	Ubertragungstyp	48
RPD01		RPD04	
1. eingetragenes Objekt	48	1. eingetragenes Objekt	48
2. eingetragenes Objekt	48	2. eingetragenes Objekt	48
3. eingetragenes Objekt	48	3. eingetragenes Objekt	48
4. eingetragenes Objekt	48	4. eingetragenes Objekt	48
Anzahl eingetragener Objekte	48	Anzahl eingetragener Objekte	48
COB-ID used by PDO	48	COB-ID used by PDO	48
first mapped object	48	first mapped object	48
fourth mapped object	48	fourth mapped object	48
Identifier	48	Identifier	48
number of mapped objects	48	number of mapped objects	48
second mapped object	48	second mapped object	48
third mapped object	48	third mapped object	48
transmission type	48	transmission type	48
Übertragungstyp	48	Übertragungstyp	48
RPD02		TPD01	
1. eingetragenes Objekt	48	1. eingetragenes Objekt	46
2. eingetragenes Objekt	48	2. eingetragenes Objekt	46
3. eingetragenes Objekt	48	3. eingetragenes Objekt	46
4. eingetragenes Objekt	48	4. eingetragenes Objekt	46
Anzahl eingetragener Objekte	48	Anzahl eingetragener Objekte	46
COB-ID used by PDO	48	COB-ID used by PDO	46
first mapped object	48	first mapped object	46
fourth mapped object	48	fourth mapped object	46
Identifier	48	Identifier	46
number of mapped objects	48	inhibit time	46
second mapped object	48	number of mapped objects	46
third mapped object	48	second mapped object	46
transmission type	48	Sperrzeit	46
Übertragungstyp	48	third mapped object	46
RPD03		transmission type	46
1. eingetragenes Objekt	48	Übertragungsmaske	47
2. eingetragenes Objekt	48	Übertragungstyp	46
3. eingetragenes Objekt	48	TPD02	
4. eingetragenes Objekt	48	1. eingetragenes Objekt	46
Anzahl eingetragener Objekte	48	2. eingetragenes Objekt	46
COB-ID used by PDO	48	3. eingetragenes Objekt	46
first mapped object	48	4. eingetragenes Objekt	46
fourth mapped object	48	Anzahl eingetragener Objekte	46
Identifier	48	COB-ID used by PDO	46
number of mapped objects	48	first mapped object	46
second mapped object	48	fourth mapped object	46
third mapped object	48	Identifier	46
transmission type	48	inhibit time	46

number of mapped objects	46	phase_order	104
second mapped object	46	Polarität Motortemperatursensor	106
Sperrzeit	46	polarity	86
third mapped object	46	pole_number	101
transmission type	46	Polpaarzahl	101
Übertragungsmaske	47	Polzahl	101
Übertragungstyp	46	position control function	112
TPD03		Position setzen	127
1. eingetragenes Objekt	46	position_actual_value	120
2. eingetragenes Objekt	46	position_control_gain	117
3. eingetragenes Objekt	46	position_control_parameter_set	117
4. eingetragenes Objekt	46	position_control_time	117
Anzahl eingetragener Objekte	46	position_control_v_max	117
COB-ID used by PDO	46	position_demand_sync_value	119
first mapped object	46	position_demand_value	118
fourth mapped object	46	position_encoder_selection	145
Identifier	46	position_error_switch_off_limit	124
inhibit time	46	position_error_tolerance_window	117
number of mapped objects	46	position_factor	77
second mapped object	46	position_range_limit	125
Sperrzeit	46	position_range_limit_enable	126
third mapped object	46	Position_reached	113
transmission type	46	position_window	123
Übertragungsmaske	47	position_window_time	123
Übertragungstyp	46	Positionier-Beschleunigung	227
TPD04		Positionier-Bremsbeschleunigung	227
1. eingetragenes Objekt	47	Positionieren	223, 229
2. eingetragenes Objekt	47	Beschleunigung beim	227
3. eingetragenes Objekt	47	Bremsbeschleunigung	227
4. eingetragenes Objekt	47	Endgeschwindigkeit	226
Anzahl eingetragener Objekte	47	Geschwindigkeit beim	226
COB-ID used by PDO	47	Handshake	229
first mapped object	47	Schnellstop-Beschleunigung	228
fourth mapped object	47	Zielposition	225
Identifier	47	Positionier-Geschwindigkeit	226
inhibit time	47	Positionierprofil	
number of mapped objects	47	Lineares	228
second mapped object	47	Ruckfreies	228
Sperrzeit	47	Sinus ²	228
third mapped object	47	Positionierung starten	229
transmission type	47	Positionswert Interpolation	235
Übertragungsmaske	47	power_stage_temperature	90
Übertragungstyp	47	pre_defined_error_field	55
PDO-Message	29, 36	producer_heartbeat_time	61
peak_current	97	product_code	169

Produktcode	169	R	
Profil Position Mode		11	
profile_deceleration	227		
Profile Position Mode	223	Ready to Switch On	184
end_velocity	226	ready_for_enab	198
motion_profile_type	228	Receive_PDO_1	48
profile_acceleration	227	Receive_PDO_2	48
profile_velocity	226	Receive_PDO_3	48
quick_stop_deceleration	228	Receive_PDO_4	48
target_position	224	Referenzfahrt	210
Profile Torque Mode	257	Steuerung der	222
current_actual_value	262	Timeout	215
dc_link_circuit_voltage	263	Referenzfahrt Methoden	216
max_torque	260	Referenzfahrten	
motor_rated_torque	261	Beschleunigung	215
target_torque	259	Geschwindigkeiten	213
torque_actual_value	262	Kriechgeschwindigkeit	214
torque_demand_value	261	Methode	212
torque_profile_type	264	Nullpunkt-Offset	212
torque_slope	263	Suchgeschwindigkeit	213
Profile Velocity Mode	244	Referenzfahrt-Methode	212
max_motor_speed	253	Referenzposition gültig	198
sensor_selection_code	248	Referenzschalter	158, 161
target_velocity	253	Polarität	160
velocity_actual_value	249	Reglerfreigabe	88
velocity_actual_value_filtered	250	Freigabe möglich	198
velocity_demand_value	248	Regler-Freigabelogik	88
velocity_display_filter_time	111	resolver_offset_angle	105
velocity_sensor	247	Resolveroffsetwinkel	105
velocity_threshold	252	restore_all_default_parameters	70
velocity_threshold_time	252	restore_parameters	70
velocity_window	251	revision_number	170
velocity_window_time	251	Revisionsnummer CANopen	170
profile_acceleration	227	R-PD0 1	48
profile_deceleration	227	R-PD0 2	48
profile_velocity	226	R-PD0 3	48
pwm_frequency	89	R-PDO 4	48
PWM-Frequenz	89		
0		S	
u			
Quick Stop Active	19/	Sample Modus	163
quick_stop_deceleration		Status	
quick_stop_option_code	∠U4	Statusmaske	105

Steuerung	165	speed_during_search_for_zero	214
sample_control		speed_limitation	
sample_data	163	Spitzenstrom	
sample_mode	163	Motor	100
sample_position_falling_edge	166	standard_error_field_0	55
sample_position_rising_edge	166	standard_error_field_1	55
sample_status	164	standard_error_field_2	55
sample_status_mask	165	standard_error_field_3	56
SAMPLE-Eingang als Referenzschalter	161	START-Eingang als Referenzschalter	161
Sampling-Position		State	
Fallende Flanke	166	Fault	184
Steigende Flanke	166	Fault Reaction Active	184
save_all_parameters	71	Not Ready to Switch On	184
Schleppfehler	112	Operation Enable	184
Definition	112	Quick Stop Active	184
Fehlerfenster	121	Ready to Switch On	184
Grenzwert- Überschreitung	124	Switch On Disabled	184
Timeoutzeit	122	Switched On	184
Schleppfehlerfenster	121	state diagram	182
Schleppfehler-Timeoutzeit	122	statemachine	182
Schnellstop-Beschleunigung	228	statusword	
SD0	29, 30	Bitbelegung	194
Fehlermeldungen	33	Objektbeschreibung	193
SDO-Message	29, 30	Statuswort	
second_mapped_object	44	Herstellerspezifische Invertierung	202
sensor_selection_code	248	Herstellerspezifische Maske	201
serial_number	170	Herstellerspezifisches	198
Seriennummer des Geräts	171	Steuerung des Reglers	181
set_position_absolute	127	Stillstandschwelle bei Drehzahlregelung	252
shutdown_option_code	203	Stillstandsschwellenzeit bei Drehzahlregelung	252
size_of_data_record	240	store_parameters	71
Skalierungsfaktoren	75	Strombegrenzung	129
Beschleunigungsfaktor	83	Stromregler	98
Geschwindigkeitsfaktor	80	Parameter	108
Positionsfaktor	77	Verstärkung	108
Vorzeichenwahl	86	Zeitkonstante	108
Sollgeschwindigkeitfür Drehzahlregelung	253	Stromsollwert	261
Sollmoment (Momentenregelung)	259	Switch On Disabled	184
Sollwert		Switched On	184
Drehzahl	248	SYNC	50
Lage (position units)	118	Synchrondrehzahl (velocity units)	249
Moment	259	synchronisation_encoder_selection	146
Strom	261	synchronisation_filter_time	148
Synchrondrehzahl (velocity units)	249	synchronisation_main	147
speed_during_search_for_switch	213	synchronisation_selector_data	147

SYNC-Message	50	Umrechnungsfaktoren	75
syncronize_on_group	237	Beschleunigungsfaktor	83
		Geschwindigkeitsfaktor	80
T		Positionsfaktor	77
I		Vorzeichenwahl	86
		Unterspannungsüberwachung aktivieren	94
target_position	224	Unterspannungsüberwachung deaktivieren	94
target_torque	258, 259		
target_velocity	253	V	
Temperatur		V	
Max. Motor	107		
Motor	107	velocity_acceleration_neg	256
third_mapped_object	44	velocity_acceleration_pos	256
torque_actual_value	262	velocity_actual_value	
torque_control_gain	108	velocity_actual_value_filtered	250
torque_control_parameters		velocity_control_filter_time	
torque_control_time		velocity_control_gain	
torque_demand_value		velocity_control_parameter_set	110
torque_profile_type	264	velocity_control_time	
torque_slope		velocity_deceleration_neg	256
T-PDO 1		velocity_deceleration_pos	
T-PDO 2	46	velocity_demand_sync_value	
T-PDO 3	46	velocity_demand_value	
T-PDO 4		velocity_display_filter_time	
tpdo_1_transmit_mask	47	velocity_encoder_factor	
tpdo_2_transmit_mask		velocity_rampe_enable	
tpdo_3_transmit_mask		velocity_ramps	
tpdo_4_transmit_mask		velocity_sensor_actual_value	
transfer_PDO_1		velocity_threshold	
transfer PDO 2		velocity_threshold_time	
transfer_PDO_3	46	velocity_window	
transfer_PDO_4		velocity_window_time	
transmission_type		vendor_id	
transmit_pdo_mapping		Verhalten bei Kommando 'disable operation'	
transmit_pdo_parameter		Verhalten bei Kommando 'quick stop'	
Typ der geladenen Firmware		Verhalten bei Kommando 'shutdown'	
,, ,		Verkabelungshinweise	
		Versionsnummer der Firmware	
U		Versionsnummer der kundenspez. Variante	
		Versionsnummer des KM-Release	
Überschreitung Grenzwert Schleppfehler	194	Verstärkung des Stromreglers	
Übertragungsart			
Übertragungsparameter für PDOs			
Überwachung der Kommunikation			
Überwachungszeit Nodeguarding			
obol wachungszeit Nouegual Ully	04		

۱۸/		Zielfenster bei Drehzahlregelung	251
VV		Zielfensterzeit	123
		Zielfensterzeit bei Drehzahlregelung	251
Warnungen anzeigen	180	Zielgeschwindigkeit für Drehzahlregelung	253
Winkelgeberoffset	105	Zielmoment (Momentenregelung)	259
		Zielposition	225
V		Zielpositionsfenster	123
X		Zulässiges Moment	260
		Zustand	
X10		Fault	184
Abtrieb	138	Fault Reaction Active	184
Antrieb	138	Not Ready to Switch On	184
Auflösung	138	Operation Enable	184
Zähler	139	Quick Stop Active	184
X2A		Ready to Switch On	184
Abtrieb	134	Switch On Disabled	184
Antrieb	134	Switched On	184
Auflösung	134	Zustandsdiagramm des Reglers	182
X2B		Zwischenkreis	
Abtrieb	136	Überwachung des	94
Antrieb	135	Zwischenkreisspannung	
Auflösung	135	aktuelle	93
Zähler	136	maximale	93
		minimale	94
7		Zwischenkreisüberwachung	93, 94
Z		Zykluszeit	
		Drehzahlregler	175
Zeitkonstante des Stromreglers	108	Lageregler	175
Zielfenster		Positioniersteuerung	176
Positionsfenster	123	Stromregler	174
Zeit		Zykluszeit Heartbeat-Telegramme	61
2011	120	Zykluszeit PDOs	42